
 1

An Approach to Improving Parametric Estimation

Models in case of Violation of Assumptions
Author: Salvatore Alessandro Sarcia1,3

Advisors: Victor R. Basili
1,2

 Giovanni Cantone
3

1
Dept. of Computer Science, University of Maryland, A.V. Williams Bldg. 115, College Park 20742, MD, USA

2
Fraunhofer Center for Experimental Software Engineering Maryland, College Park, Maryland, 20742

{basili, sarcia}@cs.umd.edu
3
DISP, Università di Roma Tor Vergata, via del Politecnico 1, 00133 Rome, Italy

sarcia@disp.uniroma2.it, cantone@uniroma2.it

Abstract— parametric models such as least squares regression functions are the most applied methods for prediction and

inference in Software Engineering. They have been used for predicting effort, size, fault proneness, defects, and many other variables
as to software processes and products. Although the high popularity of those parametric models, sometimes they fall short of providing
good results because of violations of the assumptions on which they are built. In this work, we present an approach to improving
parametric estimation models when regression assumptions on which the model is built are violated (i.e. errors are not independent, the
model is not linear, the sample is heteroscedastic, and the error probability distribution is not Gaussian). We show that, if we violate the
regression assumptions and do not deal with the consequences of these violations, we cannot improve the estimation model. Since
models can be used for prediction and inference, our proposal refers to both those aspects. The approach provides a way of improving
parametric models without making any specific assumption. Since errors can never be removed entirely, we show a risk mitigation
strategy that includes uncertainty considerations into the estimation process. The proposed approach can be completely automated and
implemented as a support tool for organizations that aims at improving their estimation process over time. Since the proposed approach
does not care about the parametric model kind and data sets, to validate the methodology, we calibrated log-linear regression functions
by using a well-known data set (COCOMO NASA), even though it is no longer in use. We prove the statement that, violating
assumptions and pretending that no consequence affects the estimation model performance is not a suitable way of dealing with
improvement issues of mature organizations.

Index Terms—Multi-layer feed-forward neural networks, non-linear regression, Bayesian learning, prediction intervals

for neural networks, risk analysis and management, learning organizations, COCOMO

—————————— � ——————————

1. INTRODUCTION

This research refers to support learning organizations [1] in achieving their business goals and gaining
competitive advantage. These organizations need to manage projects effectively and deliver products on time, on
budget, and with all functions and features as required. To this end, one of the most important keystones for their
success is to be able to estimate correctly the variables of interest of the project, task, and module (e.g., effort, fault
proneness, and defect slippage). For instance, a software organization may need to quantify the cost of developing
a software system in order to bid on the contract. So, the success (winning the contract or delivering the sub-
system as required) would depend on the capability to get the most accurate software cost estimate. Consequently,
getting accurate estimates is a strategic goal for these organizations.

Estimation accuracy is not only about yielding estimates as closer to the actual value as possible, but also
estimating the estimate variability. In this work, we refer to the improvement issue in a twofold way, (1)
improving correctness of estimates (i.e. shrinking the prediction error) and (2) improving the way of calculating
the spread of the prediction error (i.e. improving the inference about the predicted variable). The latter is also
addressed as estimating the estimation model (EM) uncertainty (e.g., quantifying the risk) or evaluating prediction
intervals (PIs) of estimates (e.g., what is the variability of the next predicted value?).

Kitchenham et al. [10] refer to several sources of error, i.e. errors found in the measurements (Measurement
error), produced by unsuitable mathematical models (Model error), wrongly assumed input values (Assumption
error), violations of regression assumptions (Violation error), or inadequacy of the projects chosen for building
such estimates (Scope error). Errors can be represented by (stochastic) variables that we can study and even try to
predict, but we cannot avoid. For this reason, in dealing with these issues, we have realized that improving
estimation models over time is not enough for supporting those software organizations. They also need to
measure the impact of the error on the stated software goals when using the estimation model in their own
environment. In other words, software organizations need to both improve their estimation models over time and
analyze the risk for planning suitable mitigation strategies.

Researchers and practitioners prefer violating assumptions (e.g. homoscedasticity, model linearity, and
normality of the distributions) and ignoring error sources, rather than dealing with the consequences of such
violations and errors. Keeping on violating assumptions and ignoring errors pretending that everything is fine
“for the sake of simplicity” is not a good way of managing learning organizations and improving estimation

 2

models. Conversely, as we propose in this work, investigating empirically consequences of those violations can
improve both estimation and inference of parametric models. For this reasons, even though we refer to parametric
estimation models, the proposed improvement strategy is mainly based on non-linear models, and non-parametric
statistics.

Organizations should be able to integrate the estimation improvement into their general improvement process
(e.g., QIP [1]). By contrary, over the last three decades, scientists and practitioners have been trying to support
software organizations in finding the best estimation model instead of trying to improve those models that
organizations have been using. The result of this huge effort is that currently software engineering practitioners
neither have the best estimation model nor appropriate improvement techniques for those models. In other words,
as argued in [14] and [12], this thirty-year research effort has been practically disappointing.

We have organized the work in some parts. First, we have presented linear and non-linear estimation models,
known improvement strategies, and techniques for evaluating PIs (i.e. uncertainty and risk) for both linear and
non-linear models. Secondly, we have defined an error taxonomy showing errors that we really need to worry
about and their consequences. Subsequently, we have presented the problem, i.e. we have answered the question
why currently used parametric estimation models fall short of providing valid and reliable results when
assumptions are violated. We have proceeded with defining the mathematical solution and its application to
software engineering. Finally, we have tried out the proposed methodology in a real case (i.e., log-linear
regression functions calibrated by using the COCOMO NASA data set).

2. PREDICTION AND INFERENCE OF ESTIMATION MODELS

Mathematically, an estimation model is a regression function fR such that y = fR(x,β) + ε, where x represents a set

of independent variables, y is the dependent variable and β is a set of parameters defining fR. The component ε is
the aleatory part of the model standing for our uncertainty on the relationship between independent and

dependent variables. Function fR cannot be calculated usually, i.e. we cannot calculate parameters β. This is

because we cannot know every point of the population. We can estimate β finding a set of estimators b such that
they minimize an error function, e.g. least squares (LS). To estimate b, we consider the relationship Oact = fR(Iact,b),
where Oact represent the actual values of y, Iact are the actual values of x (note that x is a vector of variables hence a
matrix of values), and b is the vector of parameters being estimated. For instance, using the COCOMO variables,

the estimation model would be, Effort = fR({KSLOC, 15 COCOMO multipliers}, b). If we were interested in
predicting the expected number of defects (y) according to a set of variables x (e.g., size, complexity, and
programming language), function fR would be the parametric model providing the sought estimate. Since b is

different from β, fR provides Oest = fR(Iact,b), not Oact. Then, the difference e = Oact − Oest is a vector of errors

representing ε (called residuals, with e ≠ ε and ε unknown). The most important part in modeling is to find the

best estimates for β. For calculating b, there exist some strategies, which are based on selecting b in such a way as
the function best fits the observations. If the error function is composed of a linear combination of the sought
parameters, the EM is linear in the parameters, and we have a closed solution. If the equation system is composed
of non-linear equations of the sought parameters, the EM is non-linear in the parameters and the solution can be
found iteratively.

A linear-in-the-parameter function is the following y = β0+ β1x1+ … + βQxQ (or any polynomial). Non-linear-in-

the-parameter models look like the following function y = β0+ β1tgh(w01 + w11x1+ … + wQ1xQ) + β2tgh(w02 + w12x1+
… + wQ2xQ), where tgh(.) is the hyperbolic tangent function. Therefore, a non-linear-in-the-parameter model is
composed of functions having adjustable parameters (i.e., parameters w), while a linear-in-the-parameter model is

composed of fixed functions (i.e. variables x having only parameters β).
Although we cannot make sure that the “true” regression function is linear, when the size of the sample N goes

to infinity, traditional least squares estimates applied to linear-in-the-parameter models provide the “true”

parameters β of the regression function (i.e., b = β). Conversely, non-linear-in-the-parameter models cannot
provide the true parameters of the regression function because there is no closed solution to the least squares
problem for such models (i.e., there is an iterative solution). However, when N is a finite number (as usual in
software engineering and in many other fields), linear-in-the-parameter models are not able to provide the true
value of the regression function as happening for non-linear-in-the-parameter models. Then, since a non-linear-in-
the-parameter model can be made indefinitely flexible for a fixed number of input variables and a linear one does
not, the former is more parsimonious and flexible than the latter. Operatively we cannot consider models having
an infinitive number of variables, but we can increase the number of parameters of non-linear-in-the-parameter
models. Fixing the number of variables and increasing the number of parameters of the model is the essence of the
parsimony [2]. Therefore, because of the increased parsimony of non-liner models, in cases where we do not have
an infinitive number of variables and observations (i.e., in real cases), non-linear-in-the-parameter models can
provide better estimates than the linear ones. We mainly refer to Multi-layer Feed-forward Neural Networks
(MFNNs) trained with Backpropagation [3], which are non-linear-in-the-parameter models having indefinite
flexibility. MFNNs are called arbitrary approximators (or universal approximators) not because they provide
arbitrary outcomes. The “arbitrary” aspect is only about their unlimited flexibility as explained above.

 3

The reasons why parameters of a regression function may be biased, its estimates inaccurate, and the inference
drawn from it incorrect are the following:
(a) Variable model error (VrblME): The model is missing some relevant variables; hence, it is not able to explain the

output.
(b) Redundancy model error (RdndME): The model includes too many variables that negatively affect the correctness

of the model parameters
(c) Complexity model error (CplxME): The model is not enough flexible to represent the relationship between inputs

and output. For instance, this error can happen when we choose models that are linear in the parameters, e.g.
ordinary least squares (OLS)

(d) Violation model error (VltnME): If we want to get the best estimators of β (Gauss-Markov theorem [11]) and use
the model for inference (i.e., estimating the variability of the independent variable), LS requires some
assumptions. If we violate assumptions, the model parameters may be biased and inference incorrect. We call
these assumptions as “regression assumptions”. They are:

(1) Errors ε are not x correlated

(2) The variance of the errors is constant (homoscedasticity), cov(ε) = σ2I

(3) Errors ε are not autocorrelated (not worry for software engineering data)

(e) The probability density of the error is a Gaussian, ε ∼ NID(0, σ2I), i.e. there are no outliers,
skewed/kurtotic distributions, and measurement error.

Note that, Assumption error and Scope error do not affect the correctness of the estimation model because the
former is about wrongly assumed values of the project being estimated and the latter is about the unsuitability of
the model in estimating new projects because observations used for calibrating the model are different from
projects being estimated.

To improve parametric estimation models,
improvements can be done for each bullet of
the list above. To deal with VrblME, there is no
way actually. We must find the right variables
of the model. If we do not find those variables,
the model will not be correct. To deal with
RdndME, the most applied technique is
stepwise regression, which can be forward or
backward [11]. It requires knowing the
relevance of variable being removed. If we do
not know the least relevant variables, we have
to consider all the possible models. For
instance, if we have Q variables, there will be
2Q different models. However, this procedure
is usually too expensive to be executed in real
cases. Stepwise regression is based on the
assumption that the model does not suffer of
multicollinearity [11]. If we would like to
avoid this assumption, we can apply techniques of feature reduction such as Principal component analysis (PCA)

[7] or Curvilinear component analysis (CCA) [3, pp. 310-319]. Since CCA is able to perform PCA as well, we will
focus on CCA. CCA is a technique that is able to shrink the initial input variable set into an equivalent set having a
fewer variables called curvilinear components [13]. CCA removes any linear and non-linear redundancy but it
turns the data set into an equivalent one where the variables have no correspondence with the initial ones. Since
CCA does no need any assumption, we choose it as a feature reduction technique. To deal with CplxME, the
procedure is to (1) consider different families of function, (2) compare them to each other, and (3) select the best,
i.e., the one yielding the least generalization error. Vapnik proves that leave-one-out cross-validation (LOOCV)
provides an unbiased estimate of the generalization error [16]. Therefore, if we apply LOOCV and CCA to non-
liner models we can find a model both flexible and parsimonious without making any specific assumption.

When regression assumptions do not hold, there are a number of consequences for inference to be aware of.
Before dealing with improvements, let us recall some concepts about PIs. A PI is a range where, most probably,
the next estimates will fall with a specific confidence (e.g., 95%). A PI is different from a confidence interval (CI)

because the latter refers to a parameter of the distribution, while a PI refers to the next estimate (PI ≥ CI). When
dealing with linear-in-the-parameter models, we can estimate PIs as follows. If the regression model relies upon

regression assumptions, the PI is readily available, i.e. 'x)XX('x1S)1QN(t)'y(1TT
2/1

−
α− +⋅−−± . Where, y’ =

fR(x’,b) = b0+ b1x’1+ … + bQx’Q = bx’ is the expected value (mean) of the dependent variable (y) when the

independent variables get the next value x’ = (1 x’1, …, x’Q)T, i.e., (x1 = x’1 …, xQ = x’Q). t1-α/2(N-Q-1) is a two tail t-
value (Student’s percentile) with N-Q-1 degrees of freedom. X is the observation matrix of independent variables
where the first column is composed of only 1s. N is the number of observations. Q is the number of the

TABLE 1

IMPROVING INFERENCE OF LINEAR AND NON-LINEAR MODELS

 4

independent variables. MSE
1QN

Y)HI(Y
S =

−−

−
=

T

 is an unbiased estimator of the standard deviation

of the population (σ). Y is the observation vector of the dependent variable. I is the identity matrix H = X(X T X)-1XT
Y, and MSE stands for Mean Squared Error. For non-linear models, a slightly different formula can be applied [6].

The formula for calculating PIs of MFNNs is))x(g)JJ()x(g1(S)1KN(t)'y(1TT
2/1

−
α− +⋅−−± , where y’ = fR(x’,b)

is the expected value (mean) of the dependent variable (y) when the independent variables get the next value x’ =

(1 x’1, …, x’Q)T. t1-α/2(N-K-1) is a two tail t-value (Student’s percentile) with N-K-1 degrees of freedom. N is the
number of observations, K is the number of parameters (note that K > Q).

1KN

)'yY(
S

N

1i

2
i

−−

−
=

∑ = is an unbiased estimator of the standard deviation of the population (σ). Y is the

observation vector of the dependent variable. g(x) is a vector whose ith element is the partial derivative

∂fR(x’,b)/∂bi evaluated at its true value. J is a matrix whose ijth element is the partial derivative ∂fR(xi,b)/∂bj. J can
be calculated iteratively through the training procedure (i.e. Backpropagation) [3]. Table 1 summarizes some
improvements for estimating PIs of linear and non-linear models when regression assumptions do not hold.

To deal with heteroscedasticity (i.e. a non-constant variance), we have to consider the variance of the dependent
variable as an x-dependent function. Further, if the probability distributions of variables and errors are not
Gaussian, PI formulas reported above cannot be applied anymore. Conversely, non-parametric statistics should be
preferred. In this work, we mainly refer to the empirical methodology defined by Jørgensen et al. [9] rearranged
for parametric models.

3. THE PROBLEM

So far, we have seen that for
improving the prediction capability of
linear models, we can use non-linear
models because of their parsimony
and indefinite flexibility that linear
models having the same number of
variables as the non-linear models do
not have [4, chapter 1]. Further, we
have seen that, for improving
inference (e.g., estimating PIs) of both
linear and non-linear models, when
regression assumptions are violated, a
number of measures can be taken into account (Section 1, Table 1). Since we aim at improving estimation and
inference at the same time, we should consider non-linear models (i.e., MFNNs).

The mainly problem that we deal with in this work is about estimating PIs of linear and non-linear models
(MFNNs) when regression assumptions are violated (Section 2). Although for illustrating the problem we refer to
a two-dimensional space, considerations made below can be applied, without generality loss, to an N-dimensional

space, where the variance depends on x = x1, …, xQ, Q > 2
1
.

Even though we can apply improvements to a linear and non-linear estimation model as shown in Table 1,
when regression assumptions are violated, we may have a situation like the one in Figure 1. We have considered a

relative (i.e. weighted) measure of the error, i.e. RE = e/Actual = (Actual − Estimated)/ Actual, instead of the
residuals (i.e., e) to avoid that the error increases as x values grow. Further, RE is well known and applied in

software cost estimation. Note that, other error measures can be used (e.g. BRE) [12], [9]. Since almost never we

can assume that the error distribution is a Gaussian with fixed parameters (0, σ2I), calculating PIs by formulas
based on t-student or z percentiles leads to making errors. Consequently, we may have type I or II errors. As an
example (Figure 1), if x = 0.8 KSLOC, the variance of the RE is expected to be greater than the average variance of

the sample (i.e. σ2). Therefore, if we estimated the spread by the average variance we would underestimate the
real uncertainty. In Figure 1, when x = 0.8, the expected bias is not zero. It should be calculated by the non-linear
regression function in Figure 1 (solid line).

4. THE MATHEMATICAL SOLUTION

Approach that we propose is an alternative to the non-parametric bootstrap method [5] and it is an evolution of

the Jørgensen’s approach for calculating empirical PIs for both regression-based models [8] and human judgment

[9]. The proposed methodology may be bootstraped as well. In this first definition, however, we do not consider
the bootstrap procedure, for the sake of clearness. The proposed strategy for estimating PIs is based on removing
as many regression assumptions as possible and considering the error sample in Figure 1 (weighted

1
 Before calculating the model parameters, independent and dependent variables are transformed to the same ratio scale.

Fig. 1. Errors are x correlated, with increasing variance, biased, and with outliers.
The solid line is the expected relative error (x-dependent median) and the region
bounded by dashed lines is the associated 95% prediction interval

 5

residuals/relative error, RE). Since we do not assume that the distribution is a Gaussian, we consider the
distribution asymmetric and affected by outliers. Moreover, we assume an x-correlated RE. The solution is to
calculate the non-linear robust regression function of y (standing for RE) with respect to x (standing for KSLOC),
i.e. the solid line in Figure 1. Note that, in real cases, we would have more than one x-variable. That regression
function provides an x-dependent median, minimizing the Minkowski R-distance (R = 1). It is called robust
regression because it is less sensitive to outliers and asymmetric distributions.

To deal with the heteroscedasticity issue, we estimate
the x-dependent variance empirically. The strategy is
based on turning the problem into a two-class
discrimination problem (Bayesian approach). In
particular, we use the x-dependent median for splitting
up the sample into two classes (solid line in Figure 1).
Class A (upper side in Figure 1) and class B (lower side in
Figure 1). We use elements of classes A and B as
representatives of the unobserved data points of each
class respectively. Then, we train a Multi-layer Feed-
forward Neural Network for Discrimination (MFNND) in
such a way that its output provides a classification
decision (i.e. a new data point is classified as belonging to
A or B according to its similarity to the data used for
training). MFNND is a generalization of the traditional
logistic regression, logit [3], [4], and [6]. We call MFNND
as Bayesian Discrimination Function (BDF) because its output can be interpreted as the posterior probability that
any input belongs to class A [3], [4]. Therefore, an input is classified as belonging to class A, if the BDF output is
between [0.5, 1], e.g. 0.85. It is classified as belonging to class B otherwise, i.e. the BDF output is in [0,0.5[, e.g. 0.25,
where [.,.] is a closed interval and [.,.[is a right-open interval. The defined BDF is expressed by the following

relationship, fBDF(x1 = RE, x2=KSLOC) = [0,1], i.e. y = fBDF(x1, x2) = Pr(y=1|x1, x2), where the interval [0, 1] points out
any real number in [0,1], x1 and x2 represent the sample information, and y = 1 represents class A (y = 0 represents

class B). Assume that, the BDF yields fBDF(P1) = 0.85 (> 0.5) and fBDF(P2) = 0.25 (< 0.5). Then, project P1 would be

classified as belonging to class A, and project P2 would be classified as belonging to class B.
Assume now that instead of fixing both values x1 = RE and x2=KSLOC, we fix only x2 (= constant c), and let x1

vary. Then, BDF turns into)x(y)x(f)x|1yPr(11cx|2 2
=== = . Note that, in this 2-variable example, the estimation

model (EM) would have only one independent variable (x2=KSLOC). In case of an N-dimensional space (with N >

1), we would fix all variables except x1 (the relative error RE), i.e.)x(y)x(f)x..x|1yPr(11cx,...,cx|N2 1NN12
===

−==

and the EM would have (N – 1) variables, i.e. (x2, …, xN). Then, we predict the RE prediction interval of the EM by
feeding the project values (i.e., the EM inputs for the project) into the BDF and applying the solution in Figure 2.
Once we build the posterior probability density (solid line in Figure 2), we can obtain a (Bayesian) PI by fixing a
95% confidence, i.e. (0.025, 0.975), and picking the corresponding values of RE on the x-axis, i.e. (MeDOWN, MeUP).
This interval represents the expected range where the next RE will fall. The posterior probability density in Figure
2 has an important characteristic. Its slope gets steeper as the variance in Figure 1 decreases. It gets flatter as the
variance increases [6]. To calculate the PI corresponding to the RE range, i.e. (MeDOWN, MeUP), we first consider the

formula RE = (Actual − Estimated)/Actual and then, we deduce Actual = Estimated/(1 − RE). As shown by

Jørgensen et al. [9], the PI is then)]Me1/(O),Me1/(O[UP
1N

estDOWN
1N

est −− ++ , where)b,'x(fO R
1N

est =+ , e.g. fR(x’ = 0.7,b),

see Section 2. For instance, assume that the RE interval obtained from Figure 2 is [-0.9, 0.1] and Estimated = 3
person months, then the PI is [3/(1-(-0.9)), 3/(1-0.1)] =[1.6, 3.4] person months.

6. DISCUSSION AND CONCLUSION

Based on results in Section 5, we define an improvement and risk mitigation strategy. Gray rectangles in Figure 3
are all the possible kinds of RE ranges that we can obtain from the error analysis in Figure 2. An error PI is
unbiased, if it includes zero ([a] and [b]). It is biased otherwise ([c] and [d]). A PI is useful if it is within stated
thresholds ([a] and [c]). It is useless otherwise ([b] and [d]). An error PI is acceptable if it is useful and unbiased at
the same time ([a]). It is unacceptable otherwise ([b], [c], and [d]). Figure 3 allows us to figure out the improvement
needs (e.g. [a] does not need any improvement, while [b], [c], and [d] do). When dealing with biased intervals, we
highlight the fact that, the model is incorrect (e.g., missing variables, lack of flexibility). When the interval is too
wide, further variables (e.g., dummy variables) should be considered. Analysis in Figure 3 can be used for
defining a mitigation strategy as well, e.g. we may choose an estimate that minimizes the error of underestimates.

Note that, PI)]Me1/(O),Me1/(O[UP
1N

estDOWN
1N

est −− ++ is a way of making the estimates unbiased, even though the

formula cannot improve the estimation model (the estimation model keeps biased).

Fig. 2. Posterior probability density obtained by fixing
KSLOC and letting RE vary

 6

We tested our improvement strategy in a real case based
on the COCOMO NASA data set [15] and log-linear
regression functions. Although the COCOMO NASA data
set is more than twenty years old, we used it anymore
because what we really needed to test was the proposed
mathematical model improvement, not the relevance of the
COCOMO variables and related data. The COCOMO data
set seemed to be a good choice also because a well-known
example could better enhance comprehension, discussion,
and replication than recent models whose validity has not
been fully accepted yet. Therefore, we do not suggest using
the COCOMO model for improving estimates, but we use
its variables and data for illustrating our solution on an
estimation model where regression assumptions are

violated. The analysis starts at the beginning of 1985,
when NASA has already developed 77 software
systems, which represent their experience. The
NASA’s goals are to (1) estimate the cost of 16 next
software systems (from 1985 to 1987), (2) exploit such
experience to improve their estimation process, and
(3) state suitable mitigation strategy when estimating
the remaining 16 projects. The expected range of the
relative error for each project being estimated (16
overall) is reported in Figure 4. In particular, the
letter ‘S’ shows a possible scope error it happens when
the RE falls out of the PI. For the remaining cases, A
square expresses that the interval is too wide (i.e.
useless for inference) and the model needs to be
improved (finding dummy variables). A circle expresses that the magnitude of the PI is useful. The letter ‘U’
means that the interval is unbiased (includes zero) and the letter ‘B’ means that the interval is biased. If the model
is biased, it needs some improvement (e.g., increasing the flexibility, adding variables).

Based on the analysis in Figure 4, we infer that the EM does not need any improvement for estimating projects
5, 6, 7, 11, 12, 14, and 15 (negligible risk). The EM needs some dummy variables for shrinking the PI on project 1
(low risk) as well as the EM needs some improvements for estimating projects 16 (high risk) and project 8 (very
high risk). The EM cannot be used for estimating projects (2, 3, 4, 9, and 10) because a scope error may occur
(unpredictable risk).

8. REFERENCES

[1] V. R. Basili, G. Caldiera, H. D. Rombach, “The Experience Factory,” In Encyclopedia of Software Engineering, Ed. J.J. Marciniak, John Wiley & Sons, 1994.

[2] A. Barron, “Universal approximation bounds for superposition of a sigmoidal function”, IEEE Transaction on Ifromation Theory, 39, pp. 930-945, 1993.

[3] Bishop C., “Neural Network for Pattern Recognition,” Oxford University Press, 1995.

[4] G. Dreyfus, “Neural Networks Methodology and Applications,” Springer, 2005.

[5] B. Efron and R.J. Tibshirani, “An Introduction to the Bootstrap,” Chapman & Hall, NY, 1993.

[6] D. Husmeier, R. Dybowski, and S. Roberts, “Probabilistic Modeling in Bioinformatics and Medical Informatics,” Springer, 2004.

[7] I.T. Jollife, “Principal Component Analysis,” Springer, 1986.

[8] M. Jørgensen, “Regression Models of Software Development Effort Estimation Accuracy and Bias,” Empirical Software Engineering, Vol. 9, 297-314, 2004.

[9] M. Jørgensen and D.I.K. Sjøberg, “An Effort Prediction Interval Approach Based on the Empirical Distribution of Previous Estimation Accuracy” Journal of

Information Software and Technologies 45: 123-136, 2003.

[10] B. Kitchenham and S. Linkman, “Estimates, Uncertainty, and Risk.” IEEE Software, 14(3), pp. 69-74, May-June 1997.

[11] A.D.R. McQuarrie, C. Tsai, “Regression and Time Series Model Selection,” World Scientific, 1998.

[12] I. Myrtveit, E. Stensrud, and M. Shepperd, “Reliability and Validity in Comparative Studies of Software Prediction Models,” IEEE Trans. Software Eng., vol. 31, no.

5, pp. 380-391, May 2005.

[13] S.A. Sarcia, G. Cantone and V. R. Basili, “Adopting Curvilinear Component Analysis to Improve Software Cost Estimation Accuracy,” EASE08, Bari (Ialy), 2008.

[14] M. Shepperd, “Software project economics: a roadmap,” FOSE’07, IEEE, 2007.

[15] J.S. Shirabad, and T. Menzies, “The PROMISE Repository of Software Engineering Databases,” School of Information Technology and Engineering, University of

Ottawa, Canada. http://promise.site.uottawa.ca /SERepository, 2005.

[16] V.N. Vapnik, “The Nature of Statistical Learning Theory,” Springer, 1995.

Fig. 4. Evaluation of the expected RE range

Fig. 3. Acceptability of error prediction intervals

