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Abstract— parametric models such as least squares regression functions are the most applied methods for prediction and 

inference in Software Engineering. They have been used for predicting effort, size, fault proneness, defects, and many other variables 
as to software processes and products. Although the high popularity of those parametric models, sometimes they fall short of providing 
good results because of violations of the assumptions on which they are built. In this work, we present an approach to improving 
parametric estimation models when regression assumptions on which the model is built are violated (i.e. errors are not independent, the 
model is not linear, the sample is heteroscedastic, and the error probability distribution is not Gaussian). We show that, if we violate the 
regression assumptions and do not deal with the consequences of these violations, we cannot improve the estimation model. Since 
models can be used for prediction and inference, our proposal refers to both those aspects. The approach provides a way of improving 
parametric models without making any specific assumption. Since errors can never be removed entirely, we show a risk mitigation 
strategy that includes uncertainty considerations into the estimation process. The proposed approach can be completely automated and 
implemented as a support tool for organizations that aims at improving their estimation process over time. Since the proposed approach 
does not care about the parametric model kind and data sets, to validate the methodology, we calibrated log-linear regression functions 
by using a well-known data set (COCOMO NASA), even though it is no longer in use. We prove the statement that, violating 
assumptions and pretending that no consequence affects the estimation model performance is not a suitable way of dealing with 
improvement issues of mature organizations. 

 
Index Terms—Multi-layer feed-forward neural networks, non-linear regression, Bayesian learning, prediction intervals 

for neural networks, risk analysis and management, learning organizations, COCOMO 

——————————   �   —————————— 

1. INTRODUCTION 

This research refers to support learning organizations [1] in achieving their business goals and gaining 
competitive advantage. These organizations need to manage projects effectively and deliver products on time, on 
budget, and with all functions and features as required. To this end, one of the most important keystones for their 
success is to be able to estimate correctly the variables of interest of the project, task, and module (e.g., effort, fault 
proneness, and defect slippage). For instance, a software organization may need to quantify the cost of developing 
a software system in order to bid on the contract. So, the success (winning the contract or delivering the sub-
system as required) would depend on the capability to get the most accurate software cost estimate. Consequently, 
getting accurate estimates is a strategic goal for these organizations.  

Estimation accuracy is not only about yielding estimates as closer to the actual value as possible, but also 
estimating the estimate variability. In this work, we refer to the improvement issue in a twofold way, (1) 
improving correctness of estimates (i.e. shrinking the prediction error) and (2) improving the way of calculating 
the spread of the prediction error (i.e. improving the inference about the predicted variable). The latter is also 
addressed as estimating the estimation model (EM) uncertainty (e.g., quantifying the risk) or evaluating prediction 
intervals (PIs) of estimates (e.g., what is the variability of the next predicted value?). 

Kitchenham et al. [10] refer to several sources of error, i.e. errors found in the measurements (Measurement 
error), produced by unsuitable mathematical models (Model error), wrongly assumed input values (Assumption 
error), violations of regression assumptions (Violation error), or inadequacy of the projects chosen for building 
such estimates (Scope error). Errors can be represented by (stochastic) variables that we can study and even try to 
predict, but we cannot avoid. For this reason, in dealing with these issues, we have realized that improving 
estimation models over time is not enough for supporting those software organizations. They also need to 
measure the impact of the error on the stated software goals when using the estimation model in their own 
environment. In other words, software organizations need to both improve their estimation models over time and 
analyze the risk for planning suitable mitigation strategies. 

Researchers and practitioners prefer violating assumptions (e.g. homoscedasticity, model linearity, and 
normality of the distributions) and ignoring error sources, rather than dealing with the consequences of such 
violations and errors. Keeping on violating assumptions and ignoring errors pretending that everything is fine 
“for the sake of simplicity” is not a good way of managing learning organizations and improving estimation 
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models. Conversely, as we propose in this work, investigating empirically consequences of those violations can 
improve both estimation and inference of parametric models. For this reasons, even though we refer to parametric 
estimation models, the proposed improvement strategy is mainly based on non-linear models, and non-parametric 
statistics. 

Organizations should be able to integrate the estimation improvement into their general improvement process 
(e.g., QIP [1]). By contrary, over the last three decades, scientists and practitioners have been trying to support 
software organizations in finding the best estimation model instead of trying to improve those models that 
organizations have been using. The result of this huge effort is that currently software engineering practitioners 
neither have the best estimation model nor appropriate improvement techniques for those models. In other words, 
as argued in [14] and [12], this thirty-year research effort has been practically disappointing. 

We have organized the work in some parts. First, we have presented linear and non-linear estimation models, 
known improvement strategies, and techniques for evaluating PIs (i.e. uncertainty and risk) for both linear and 
non-linear models. Secondly, we have defined an error taxonomy showing errors that we really need to worry 
about and their consequences. Subsequently, we have presented the problem, i.e. we have answered the question 
why currently used parametric estimation models fall short of providing valid and reliable results when 
assumptions are violated. We have proceeded with defining the mathematical solution and its application to 
software engineering. Finally, we have tried out the proposed methodology in a real case (i.e., log-linear 
regression functions calibrated by using the COCOMO NASA data set). 

2. PREDICTION AND INFERENCE OF ESTIMATION MODELS 

Mathematically, an estimation model is a regression function fR such that  y = fR(x,β) + ε, where x represents a set 

of independent variables, y is the dependent variable and β is a set of parameters defining fR. The component ε is 
the aleatory part of the model standing for our uncertainty on the relationship between independent and 

dependent variables. Function fR cannot be calculated usually, i.e. we cannot calculate parameters β. This is 

because we cannot know every point of the population. We can estimate β finding a set of estimators b such that 
they minimize an error function, e.g. least squares (LS). To estimate b, we consider the relationship Oact = fR(Iact,b), 
where Oact represent the actual values of y, Iact are the actual values of x (note that x is a vector of variables hence a 
matrix of values), and b is the vector of parameters being estimated. For instance, using the COCOMO variables, 

the estimation model would be, Effort = fR({KSLOC, 15 COCOMO multipliers}, b). If we were interested in 
predicting the expected number of defects (y) according to a set of variables x (e.g., size, complexity, and 
programming language), function fR would be the parametric model providing the sought estimate. Since b is 

different from β, fR provides Oest = fR(Iact,b), not Oact. Then, the difference e = Oact − Oest is a vector of errors 

representing ε (called residuals, with e ≠ ε and ε unknown). The most important part in modeling is to find the 

best estimates for β. For calculating b, there exist some strategies, which are based on selecting b in such a way as 
the function best fits the observations. If the error function is composed of a linear combination of the sought 
parameters, the EM is linear in the parameters, and we have a closed solution. If the equation system is composed 
of non-linear equations of the sought parameters, the EM is non-linear in the parameters and the solution can be 
found iteratively. 

A linear-in-the-parameter function is the following y = β0+ β1x1+ … + βQxQ (or any polynomial). Non-linear-in-

the-parameter models look like the following function y = β0+ β1tgh(w01 + w11x1+ … + wQ1xQ) + β2tgh(w02 + w12x1+ 
… + wQ2xQ), where tgh(.) is the hyperbolic tangent function. Therefore, a non-linear-in-the-parameter model is 
composed of functions having adjustable parameters (i.e., parameters w), while a linear-in-the-parameter model is 

composed of fixed functions (i.e. variables x having only parameters β). 
Although we cannot make sure that the “true” regression function is linear, when the size of the sample N goes 

to infinity, traditional least squares estimates applied to linear-in-the-parameter models provide the “true” 

parameters β of the regression function (i.e., b = β). Conversely, non-linear-in-the-parameter models cannot 
provide the true parameters of the regression function because there is no closed solution to the least squares 
problem for such models (i.e., there is an iterative solution). However, when N is a finite number (as usual in 
software engineering and in many other fields), linear-in-the-parameter models are not able to provide the true 
value of the regression function as happening for non-linear-in-the-parameter models. Then, since a non-linear-in-
the-parameter model can be made indefinitely flexible for a fixed number of input variables and a linear one does 
not, the former is more parsimonious and flexible than the latter. Operatively we cannot consider models having 
an infinitive number of variables, but we can increase the number of parameters of non-linear-in-the-parameter 
models. Fixing the number of variables and increasing the number of parameters of the model is the essence of the 
parsimony [2]. Therefore, because of the increased parsimony of non-liner models, in cases where we do not have 
an infinitive number of variables and observations (i.e., in real cases), non-linear-in-the-parameter models can 
provide better estimates than the linear ones. We mainly refer to Multi-layer Feed-forward Neural Networks 
(MFNNs) trained with Backpropagation [3], which are non-linear-in-the-parameter models having indefinite 
flexibility. MFNNs are called arbitrary approximators (or universal approximators) not because they provide 
arbitrary outcomes. The “arbitrary” aspect is only about their unlimited flexibility as explained above.  
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The reasons why parameters of a regression function may be biased, its estimates inaccurate, and the inference 
drawn from it incorrect are the following: 
(a) Variable model error (VrblME): The model is missing some relevant variables; hence, it is not able to explain the 

output. 
(b) Redundancy model error (RdndME): The model includes too many variables that negatively affect the correctness 

of the model parameters 
(c) Complexity model error (CplxME): The model is not enough flexible to represent the relationship between inputs 

and output. For instance, this error can happen when we choose models that are linear in the parameters, e.g. 
ordinary least squares (OLS) 

(d) Violation model error (VltnME): If we want to get the best estimators of β (Gauss-Markov theorem [11]) and use 
the model for inference (i.e., estimating the variability of the independent variable), LS requires some 
assumptions. If we violate assumptions, the model parameters may be biased and inference incorrect. We call 
these assumptions as “regression assumptions”. They are: 

(1) Errors ε are not x correlated 

(2) The variance of the errors is constant (homoscedasticity), cov(ε) = σ2I 

(3) Errors ε are not autocorrelated (not worry for software engineering data) 

(e) The probability density of the error is a Gaussian, ε ∼ NID(0, σ2I), i.e. there are no outliers, 
skewed/kurtotic distributions, and measurement error. 

Note that, Assumption error and Scope error do not affect the correctness of the estimation model because the 
former is about wrongly assumed values of the project being estimated and the latter is about the unsuitability of 
the model in estimating new projects because observations used for calibrating the model are different from 
projects being estimated. 

To improve parametric estimation models, 
improvements can be done for each bullet of 
the list above. To deal with VrblME, there is no 
way actually. We must find the right variables 
of the model. If we do not find those variables, 
the model will not be correct. To deal with 
RdndME, the most applied technique is 
stepwise regression, which can be forward or 
backward [11]. It requires knowing the 
relevance of variable being removed. If we do 
not know the least relevant variables, we have 
to consider all the possible models. For 
instance, if we have Q variables, there will be 
2Q different models. However, this procedure 
is usually too expensive to be executed in real 
cases. Stepwise regression is based on the 
assumption that the model does not suffer of 
multicollinearity [11]. If we would like to 
avoid this assumption, we can apply techniques of feature reduction such as Principal component analysis (PCA) 

[7] or Curvilinear component analysis (CCA) [3, pp. 310-319]. Since CCA is able to perform PCA as well, we will 
focus on CCA. CCA is a technique that is able to shrink the initial input variable set into an equivalent set having a 
fewer variables called curvilinear components [13]. CCA removes any linear and non-linear redundancy but it 
turns the data set into an equivalent one where the variables have no correspondence with the initial ones. Since 
CCA does no need any assumption, we choose it as a feature reduction technique. To deal with CplxME, the 
procedure is to (1) consider different families of function, (2) compare them to each other, and (3) select the best, 
i.e., the one yielding the least generalization error. Vapnik proves that leave-one-out cross-validation (LOOCV) 
provides an unbiased estimate of the generalization error [16]. Therefore, if we apply LOOCV and CCA to non-
liner models we can find a model both flexible and parsimonious without making any specific assumption. 

When regression assumptions do not hold, there are a number of consequences for inference to be aware of. 
Before dealing with improvements, let us recall some concepts about PIs. A PI is a range where, most probably, 
the next estimates will fall with a specific confidence (e.g., 95%). A PI is different from a confidence interval (CI) 

because the latter refers to a parameter of the distribution, while a PI refers to the next estimate (PI ≥ CI). When 
dealing with linear-in-the-parameter models, we can estimate PIs as follows. If the regression model relies upon 

regression assumptions, the PI is readily available, i.e. 'x)XX('x1S)1QN(t)'y( 1TT
2/1

−
α− +⋅−−± . Where, y’ = 

fR(x’,b) = b0+ b1x’1+ … + bQx’Q = bx’ is the expected value (mean) of the dependent variable (y) when the 

independent variables get the next value x’ = (1 x’1, …, x’Q)T, i.e., (x1 = x’1 …, xQ = x’Q). t1-α/2(N-Q-1) is a two tail t-
value (Student’s percentile) with N-Q-1 degrees of freedom. X is the observation matrix of independent variables 
where the first column is composed of only 1s. N is the number of observations. Q is the number of the 

TABLE 1 

IMPROVING INFERENCE OF LINEAR AND NON-LINEAR MODELS 
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Y, and MSE stands for Mean Squared Error. For non-linear models, a slightly different formula can be applied [6]. 
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number of observations, K is the number of parameters (note that K > Q). 
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∑ =  is an unbiased estimator of the standard deviation of the population (σ). Y is the 

observation vector of the dependent variable. g(x) is a vector whose ith element is the partial derivative 

∂fR(x’,b)/∂bi evaluated at its true value. J is a matrix whose ijth element is the partial derivative ∂fR(xi,b)/∂bj. J can 
be calculated iteratively through the training procedure (i.e. Backpropagation) [3]. Table 1 summarizes some 
improvements for estimating PIs of linear and non-linear models when regression assumptions do not hold.  

To deal with heteroscedasticity (i.e. a non-constant variance), we have to consider the variance of the dependent 
variable as an x-dependent function. Further, if the probability distributions of variables and errors are not 
Gaussian, PI formulas reported above cannot be applied anymore. Conversely, non-parametric statistics should be 
preferred. In this work, we mainly refer to the empirical methodology defined by Jørgensen et al. [9] rearranged 
for parametric models. 

3. THE PROBLEM 

So far, we have seen that for 
improving the prediction capability of 
linear models, we can use non-linear 
models because of their parsimony 
and indefinite flexibility that linear 
models having the same number of 
variables as the non-linear models do 
not have [4, chapter 1]. Further, we 
have seen that, for improving 
inference (e.g., estimating PIs) of both 
linear and non-linear models, when 
regression assumptions are violated, a 
number of measures can be taken into account (Section 1, Table 1). Since we aim at improving estimation and 
inference at the same time, we should consider non-linear models (i.e., MFNNs). 

The mainly problem that we deal with in this work is about estimating PIs of linear and non-linear models 
(MFNNs) when regression assumptions are violated (Section 2). Although for illustrating the problem we refer to 
a two-dimensional space, considerations made below can be applied, without generality loss, to an N-dimensional 

space, where the variance depends on x = x1, …, xQ, Q > 2
1
. 

Even though we can apply improvements to a linear and non-linear estimation model as shown in Table 1, 
when regression assumptions are violated, we may have a situation like the one in Figure 1. We have considered a 

relative (i.e. weighted) measure of the error, i.e. RE = e/Actual = (Actual − Estimated)/ Actual, instead of the 
residuals (i.e., e) to avoid that the error increases as x values grow. Further, RE is well known and applied in 

software cost estimation. Note that, other error measures can be used (e.g. BRE) [12], [9]. Since almost never we 

can assume that the error distribution is a Gaussian with fixed parameters (0, σ2I), calculating PIs by formulas 
based on t-student or z percentiles leads to making errors. Consequently, we may have type I or II errors. As an 
example (Figure 1), if x = 0.8 KSLOC, the variance of the RE is expected to be greater than the average variance of 

the sample (i.e. σ2). Therefore, if we estimated the spread by the average variance we would underestimate the 
real uncertainty. In Figure 1, when x = 0.8, the expected bias is not zero. It should be calculated by the non-linear 
regression function in Figure 1 (solid line). 

4. THE MATHEMATICAL SOLUTION 

Approach that we propose is an alternative to the non-parametric bootstrap method [5] and it is an evolution of 

the Jørgensen’s approach for calculating empirical PIs for both regression-based models [8] and human judgment 

[9]. The proposed methodology may be bootstraped as well. In this first definition, however, we do not consider 
the bootstrap procedure, for the sake of clearness. The proposed strategy for estimating PIs is based on removing 
as many regression assumptions as possible and considering the error sample in Figure 1 (weighted 

                                                 
1
 Before calculating the model parameters, independent and dependent variables are transformed to the same ratio scale. 

 
 
Fig. 1. Errors are x correlated, with increasing variance, biased, and with outliers. 
The solid line is the expected relative error (x-dependent median) and the region 
bounded by dashed lines is the associated 95% prediction interval 
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residuals/relative error, RE). Since we do not assume that the distribution is a Gaussian, we consider the 
distribution asymmetric and affected by outliers. Moreover, we assume an x-correlated RE. The solution is to 
calculate the non-linear robust regression function of y (standing for RE) with respect to x (standing for KSLOC), 
i.e. the solid line in Figure 1. Note that, in real cases, we would have more than one x-variable. That regression 
function provides an x-dependent median, minimizing the Minkowski R-distance (R = 1). It is called robust 
regression because it is less sensitive to outliers and asymmetric distributions. 

To deal with the heteroscedasticity issue, we estimate 
the x-dependent variance empirically. The strategy is 
based on turning the problem into a two-class 
discrimination problem (Bayesian approach). In 
particular, we use the x-dependent median for splitting 
up the sample into two classes (solid line in Figure 1). 
Class A (upper side in Figure 1) and class B (lower side in 
Figure 1). We use elements of classes A and B as 
representatives of the unobserved data points of each 
class respectively. Then, we train a Multi-layer Feed-
forward Neural Network for Discrimination (MFNND) in 
such a way that its output provides a classification 
decision (i.e. a new data point is classified as belonging to 
A or B according to its similarity to the data used for 
training). MFNND is a generalization of the traditional 
logistic regression, logit [3], [4], and [6]. We call MFNND 
as Bayesian Discrimination Function (BDF) because its output can be interpreted as the posterior probability that 
any input belongs to class A [3], [4]. Therefore, an input is classified as belonging to class A, if the BDF output is 
between [0.5, 1], e.g. 0.85. It is classified as belonging to class B otherwise, i.e. the BDF output is in [0,0.5[, e.g. 0.25, 
where [.,.] is  a closed interval and [.,.[ is a right-open interval. The defined BDF is expressed by the following 

relationship, fBDF(x1 = RE, x2=KSLOC) = [0,1], i.e. y = fBDF(x1, x2) = Pr(y=1|x1, x2), where the interval [0, 1] points out 
any real number in [0,1], x1 and x2 represent the sample information, and y = 1 represents class A (y = 0 represents 

class B). Assume that, the BDF yields fBDF(P1) = 0.85 (> 0.5) and fBDF(P2) = 0.25 (< 0.5). Then, project P1 would be 

classified as belonging to class A, and project P2 would be classified as belonging to class B. 
Assume now that instead of fixing both values x1 = RE and x2=KSLOC, we fix only x2 (= constant c), and let x1 

vary. Then, BDF turns into )x(y)x(f)x|1yPr( 11cx|2 2
=== = . Note that, in this 2-variable example, the estimation 

model (EM) would have only one independent variable (x2=KSLOC). In case of an N-dimensional space (with N > 

1), we would fix all variables except x1 (the relative error RE), i.e. )x(y)x(f)x..x|1yPr( 11cx,...,cx|N2 1NN12
===

−==  

and the EM would have (N – 1) variables, i.e. (x2, …, xN). Then, we predict the RE prediction interval of the EM by 
feeding the project values (i.e., the EM inputs for the project) into the BDF and applying the solution in Figure 2. 
Once we build the posterior probability density (solid line in Figure 2), we can obtain a (Bayesian) PI by fixing a 
95% confidence, i.e. (0.025, 0.975), and picking the corresponding values of RE on the x-axis, i.e. (MeDOWN, MeUP). 
This interval represents the expected range where the next RE will fall. The posterior probability density in Figure 
2 has an important characteristic. Its slope gets steeper as the variance in Figure 1 decreases. It gets flatter as the 
variance increases [6]. To calculate the PI corresponding to the RE range, i.e. (MeDOWN, MeUP), we first consider the 

formula RE = (Actual − Estimated)/Actual and then, we deduce Actual = Estimated/(1 − RE). As shown by 

Jørgensen et al. [9], the PI is then )]Me1/(O),Me1/(O[ UP
1N

estDOWN
1N

est −− ++ , where )b,'x(fO R
1N

est =+ , e.g. fR(x’ = 0.7,b), 

see Section 2. For instance, assume that the RE interval obtained from Figure 2 is [-0.9, 0.1] and Estimated = 3 
person months, then the PI is [3/(1-(-0.9)), 3/(1-0.1)] =[1.6, 3.4] person months. 

6. DISCUSSION AND CONCLUSION 

Based on results in Section 5, we define an improvement and risk mitigation strategy. Gray rectangles in Figure 3 
are all the possible kinds of RE ranges that we can obtain from the error analysis in Figure 2. An error PI is 
unbiased, if it includes zero ([a] and [b]). It is biased otherwise ([c] and [d]). A PI is useful if it is within stated 
thresholds ([a] and [c]). It is useless otherwise ([b] and [d]). An error PI is acceptable if it is useful and unbiased at 
the same time ([a]). It is unacceptable otherwise ([b], [c], and [d]). Figure 3 allows us to figure out the improvement 
needs (e.g. [a] does not need any improvement, while [b], [c], and [d] do). When dealing with biased intervals, we 
highlight the fact that, the model is incorrect (e.g., missing variables, lack of flexibility). When the interval is too 
wide, further variables (e.g., dummy variables) should be considered. Analysis in Figure 3 can be used for 
defining a mitigation strategy as well, e.g. we may choose an estimate that minimizes the error of underestimates. 

Note that, PI  )]Me1/(O),Me1/(O[ UP
1N

estDOWN
1N

est −− ++  is a way of making the estimates unbiased, even though the 

formula cannot improve the estimation model (the estimation model keeps biased). 

 
 

Fig. 2. Posterior probability density obtained by fixing 
KSLOC and letting RE vary 
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We tested our improvement strategy in a real case based 
on the COCOMO NASA data set [15] and log-linear 
regression functions. Although the COCOMO NASA data 
set is more than twenty years old, we used it anymore 
because what we really needed to test was the proposed 
mathematical model improvement, not the relevance of the 
COCOMO variables and related data. The COCOMO data 
set seemed to be a good choice also because a well-known 
example could better enhance comprehension, discussion, 
and replication than recent models whose validity has not 
been fully accepted yet. Therefore, we do not suggest using 
the COCOMO model for improving estimates, but we use 
its variables and data for illustrating our solution on an 
estimation model where regression assumptions are 

violated. The analysis starts at the beginning of 1985, 
when NASA has already developed 77 software 
systems, which represent their experience. The 
NASA’s goals are to (1) estimate the cost of 16 next 
software systems (from 1985 to 1987), (2) exploit such 
experience to improve their estimation process, and 
(3) state suitable mitigation strategy when estimating 
the remaining 16 projects. The expected range of the 
relative error for each project being estimated (16 
overall) is reported in Figure 4. In particular, the 
letter ‘S’ shows a possible scope error it happens when 
the RE falls out of the PI. For the remaining cases, A 
square expresses that the interval is too wide (i.e. 
useless for inference) and the model needs to be 
improved (finding dummy variables). A circle expresses that the magnitude of the PI is useful. The letter ‘U’ 
means that the interval is unbiased (includes zero) and the letter ‘B’ means that the interval is biased. If the model 
is biased, it needs some improvement (e.g., increasing the flexibility, adding variables). 

Based on the analysis in Figure 4, we infer that the EM does not need any improvement for estimating projects 
5, 6, 7, 11, 12, 14, and 15 (negligible risk). The EM needs some dummy variables for shrinking the PI on project 1 
(low risk) as well as the EM needs some improvements for estimating projects 16 (high risk) and project 8 (very 
high risk). The EM cannot be used for estimating projects (2, 3, 4, 9, and 10) because a scope error may occur 
(unpredictable risk). 
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Fig. 4. Evaluation of the expected RE range  

 
 

Fig. 3. Acceptability of error prediction intervals 


