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Abstract— In this work, we show the mathematical reasons why parametric models fall short of providing correct estimates and define an 
approach that overcomes the causes of these shortfalls. The approach aims at improving parametric estimation models when any regression 
model assumption is violated for the data being analyzed. Violations can be that, the errors are x-correlated, the model is not linear, the sam-
ple is heteroscedastic, or the error probability distribution is not Gaussian. If data violates the regression assumptions and we do not deal with 
the consequences of these violations, we cannot improve the model and estimates will be incorrect forever. The novelty of this work is that we 
define and use a feed-forward multi-layer neural network for discrimination problems to calculate prediction intervals (i.e. evaluate uncer-
tainty), make estimates, and detect improvement needs. The primary difference from traditional methodologies is that the proposed approach 
can deal with scope error, model error, and assumption error at the same time. The approach can be applied for prediction, inference, and 
model improvement over any situation and context without making specific assumptions. An important benefit of the approach is that, it can 
be completely automated as a stand-alone estimation methodology or used for supporting experts and organizations together with other es-
timation techniques (e.g., human judgment, parametric models). Unlike other methodologies, the proposed approach focuses on the model 
improvement by integrating the estimation activity into a wider process that we call the Estimation Improvement Process as an instantiation of 
the Quality Improvement Paradigm. This approach aids mature organizations in learning from their experience and improving their processes 
over time with respect to managing their estimation activites. To provide an exposition of the approach, we use an old NASA COCOMO data 
set to (1) build an evolvable neural network model and (2) show how a parametric model, e.g, a regression model, can be improved and 
evolved with the new project data. 
 

Index Terms— Multi-layer feed-forward neural networks, non-linear regression, curvilinear component analysis, Bayesian 
learning, prediction intervals for neural networks, risk analysis and management, learning organizations, software cost 
prediction, integrated software engineering environment, quality improvement paradigm, estimation improvement paradigm, 
bayesian discrimination function, TAME system 

——————————      —————————— 

1 INTRODUCTION

HIS research supports learning organizations 
[BASILI92B] in achieving their business goals and 
gaining competitive advantage. These organizations 

need to manage projects effectively and deliver products 
on time, on budget, and with all the functions and fea-
tures required. To this end, one of the most important 
keystones for their success is to be able to estimate cor-
rectly the variables of interest of the project, task, and 
module (e.g., effort, fault proneness, and defect slippage). 
For instance, a software organization may need to quan-
tify the cost of developing a software system in order to 
bid on the contract. So, the success (gaining the contract 
or delivering the sub-system as required) would depend 
on the capability to get the most accurate software cost 

estimate. Consequently, getting accurate estimates is a 
strategic goal for these organizations.  

Estimation accuracy is not only about yielding esti-
mates as close to the actual value as possible, but also 
estimating the variability of the estimates. In this work, 
we refer to the improvement issue in a twofold way, (1) 
improving the correctness of the estimates (i.e. shrinking 
the prediction error) and (2) improving the way the 
spread of the prediction error is calculated (i.e. improving 
the inference about the predicted variable). The latter is 
also referred to as estimating the estimation model (EM) 
uncertainty (e.g., quantifying the risk) or calculating pre-
diction intervals (PIs) of estimates (e.g., what is the vari-
ability of the next predicted value?). 

T
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Once an organization has invested in an estimation 
model and learnt to work with it, it is hard for them to 
switch models. However, they need to improve their es-
timation capability over time, and thus their model. We 
use the uncertainty arising from the estimation model to 
evaluate, select, and improve the model that organiza-
tions use. A key point is that, the accuracy calculated by 
some summary statistics over the estimation error (as is 
usually done) is not sufficient to evaluate and select the 
estimation model. In this work, we present an approach 
for dealing with estimation models. We improve the 
model itself over time and correct the estimates by coping 
with of the types of error that affect estimation models. 

Kitchenham et al. [KITCHENHAM97] refer to several 
sources of error, i.e. errors found in the measurements 
(Measurement error), produced by unsuitable mathe-
matical models (model error), wrongly assumed input 
values (assumption error), or inadequacy of the projects 
chosen for building such estimates (scope error). Errors 
can be represented by (stochastic) variables that we can 
study and even try to predict, but we cannot avoid. For 
this reason, in dealing with these issues, we have realized 
that improving estimation models over time is not 
enough for supporting those software organizations. 
They also need to measure the impact of the error on the 
stated software goals when using the estimation model in 
their own environment. In other words, software organi-
zations need to both improve their estimation models 
over time and analyze the risk for planning suitable miti-
gation strategies. 

Researchers and practitioners prefer violating assump-
tions (e.g. homoscedasticity, model linearity, and normal-
ity of the distributions) and ignoring error sources, rather 
than dealing with the consequences of such violations 
and errors. To continue violating assumptions and ignor-
ing errors pretending that everything is fine “for the sake 
of simplicity” is not a good way of managing learning 
organizations and improving estimation models. Con-
versely, as we propose in this work, investigating empiri-
cally consequences of those violations can improve both 
estimation and inference of parametric models. For this 
reasons, even though we refer to parametric estimation 
models, the proposed improvement strategy is mainly 
based on non-linear models, non-parametric and Bayes-
ian statistics. 

Organizations should be able to integrate the estima-
tion improvement into their general improvement process 
(e.g., QIP [BASILI92B]). By contrary, over the last three 
decades, scientists and practitioners have been trying to 
support software organizations in finding the best estima-
tion model instead of trying to improve those models that 
organizations have been using. The result of this huge 
effort is that currently software engineering practitioners 
neither have the best estimation model nor appropriate 
improvement techniques for those models. In other 
words, as argued in [SHEPPERD07A], [MYRTVEI05], 
this thirty-year research effort has been practically disap-
pointing. The impossibility to find the best model hints 

that comparative studies make sense only within a spe-
cific context. If we change that context, the results of 
comparative analyses are no longer valid. This is the rea-
son why, we focus on improving estimation models over 
time exploiting the past experience of the organization 
and do not care about finding the best model. 

We have organized the work in some parts. First, we 
define the estimation improvement process that we will 
refer to in the work. Secondly, we present linear and non-
linear estimation models, known improvement strategies, 
and techniques for evaluating PIs (i.e. uncertainty and 
risk) for both linear and non-linear models. Thirdly, we 
define an error taxonomy showing errors that we really 
need to worry about and their consequences. Subse-
quently, we present the problem, i.e. we answer the ques-
tion why currently used parametric estimation models 
fall short of providing valid and reliable results when 
regression assumptions are violated. We proceed by de-
fining the mathematical solution and its application to 
software engineering problems (the proposed approach). 
Finally, we show how the approach works in a real case 
(i.e. COCOMO NASA data set). Of course, we leave out 
evaluation and comparison between the proposed ap-
proach and the existing ones because the aim of this work 
is to define the methodology as a whole, not to evaluate 
it. We finish by discussing benefits and drawbacks of the 
proposed approach. 

2 PARAMETRIC ESTIMATION MODELS 
The estimation techniques we refer to are based upon 
parametric models that receive inputs and provide an 
output (the estimate), see Fig. 1, where we estimate, 
through the model EM, a dependent variable (y) based on 
a number of independent variables (x).  

The accuracy is checked by analyzing the estimation 
error, i.e. the deviation between the estimated output 
(when we feed the model with actual inputs) and the ac-
tual output. 

 

 
 

Fig. 1. A Parametric estimation model. 

Even though we refer to functional and parametric esti-
mation models, we may think of the EM as a system, 
which produces estimates based on input values. For in-
stance, human-judgment approaches fall in this category. 
That is, the experts is the EM, using their expertise and 
local data as inputs x, to provide an estimates y. 

In this work, we use some terms with specific mean-
ings and so we clarify those meanings here to avoid mis-
understandings. 
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An Estimate/Estimation is any prediction of the quantity 
of interest that can be greater or lower than the value it is 
predicting. An Estimation model is any system able to pro-
vide estimates on the quantity of interest, e.g. COCOMO, 
regression models, machine learning, and human-based 
judgment. An Evaluation model is any system able to pro-
vide a decision about whether the performance of the 
estimation model is acceptable or not. 

We refer to a variable as a (1) characteristic when we 
want to emphasize its role in the context (2) feature when 
we want emphasize its role in a neural network, (3) factor 
when we want to emphasize its role in regression models. 

3 ESTIMATION IMPROVEMENT PROCESS 
In this section, we provide an overview of the estimation 
improvement process (EIP) to give a context for the evo-
lution of EM over time. We will define EIP in more details 
in Section 6.3. The EIP can be considered as a specializa-
tion of the Quality Improvement Paradigm (QIP) 
[BASILI92B], [BASILI92] for estimation processes (Fig. 2). 
The novelty of the EIP is that, it exploits experience pack-
ages based on specific kinds of neural networks, which 
can provide estimation model uncertainty for the organi-
zation without making any specific assumptions. Once 
such neural networks have been built using the organiza-
tion’s data, the Experience Factory (EF) can provide a pro-
ject with automated support tools, which simplify the 
reuse and exploitation of experience. We call such a neu-
ral network-based package an Automated Experience 
Package (AEP), a tool for supporting project organiza-
tions in estimations. AEPs together with the strategy de-
fined in Section 6.1 can (1) provide estimates throughout 
the development process, (2) make estimation uncertainty 
analyses, (3) drive the risk mitigation strategy, and (4) 
detect estimation model improvement needs without con-
tinuous human interaction. The EIP is a tailored version 
of the QIP with additional specifications aimed at sup-
porting a project organization in making estimates, an 
activity usually included in the project management plan 
at the project organization level. 
 

 
 
Fig. 2. Experience Factory implementing the Estimation Improve-
ment Process. 

The EIP is composed of six steps [BASILI92B]: 

1. Characterize the current project and its environment 
with respect to models and variables, e.g., what is the 
current model for cost estimation? 

2. Set Goals for successful project performance and im-
provement, e.g., what the acceptable estimation error? 

3. Choose the Process for achieving the stated goals of this 
project, e.g., what added activities are needed to use 
and evolve the AEP? 

4. Execute the Process for building the products, collecting 
data, and perform activities specific to the estimation 
process: (4.A.) Estimate uncertainty and mitigate risks, 
i.e. based on the products of the AEP, state the project 
estimate that minimizes the estimation risk (e.g. a fail-
ure) and (4.B.) Manage risks by controlling and evaluat-
ing risks by monitoring the project and checking 
whether it meets its goals. 

5. Analyze the data to evaluate the current practices, de-
termine problems, record findings, and make recom-
mendations for future project improvements. For the 
estimation process, we need to (5.A.) Analyze data 
about the project performance, and (5.B) Improve the 
estimation model for online support of the project or-
ganization. 

6. Package the experience by building an improved ver-
sion of the AEP and save it in an experience base to be 
reused on future estimation of projects.  
This way of managing experience allows the EF to 

check automatically whether the project organization is 
complying with the organization lessons learned and the 
project organization to reuse automatically the organiza-
tion experience to mitigate the risk. The project organiza-
tion can exploit automated support tools, i.e. the AEP, for 
managing estimates before, during, and after the project 
execution (e.g. shrinking the effort spent for the project 
management). 

Once the EM has been built, we can consider two dif-
ferent kinds of estimates (Fig. 3), the estimate obtained 
feeding the model with estimated inputs (time T) and the 
estimate obtained feeding the model with actual inputs 
(time T+2).  
 

 
 

Fig. 3. Different kinds of estimates (Prediction and Evaluation). 

We will use time T to represent the start of the project, 
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time T+1 to represent the end of the project when actual 
inputs can be known, and time T+2 to represent the post 
project accuracy evaluation. Note that, Fig. 3 shows some 
activities already reported in Fig. 2. Estimate at time T 
(Prediction) refers to the estimation where the input val-
ues (Iest) are estimated and the output, est

estO  = EM(Iest) is 
calculated based upon those estimated inputs. Since we 
do not know the actual values of the input, Iact at time T, 
we cannot check the accuracy of the EM from these esti-
mates est

estO (e.g., in cost estimation models, actual size is 
different from estimated size),    

At time T +1, we know both Iact and Oact. Thus, at time 
T+2 we can calculate act

estO  = EM(Iact), the output estimated 
by actual inputs, and we know Iact, the actual output. So to 
evaluate the accuracy we can compare act

estO  to Oact (hori-
zontal dashed double-arrow line in Fig. 3). If the estima-
tion model was perfect, the estimated values ( act

estO ) 
should be equal to the actual values (Oact). It almost never 
happens, hence we have to deal with prediction errors 
and think about how improving the considered estima-
tion models. 
 
3.1 Improving estimation models 
Mathematically, the EM in Fig. 1 is a regression function 
fR such that y = fR(x,β) + ε, where R stands for regression, 
x represents a set of independent variables, y is the de-
pendent variable and β is the set of parameters of fR. The 
component ε is the aleatory (unknown) part of the model 
representing our uncertainty about the relationship be-
tween independent and dependent variables. Function fR 
cannot be formulated because we cannot calculate pa-
rameters β, as  we do not know every point of the popula-
tion. But, we can estimate β by finding a set of estimators 
b such that they minimize an error function (e.g., least 
squares). To estimate b, we consider the relationship Oact 

= fR(Iact,b), where Oact represent the actual values of y, Iact 
are the actual values of x, and b are parameters being es-
timated. Because of ε, fR provides Oest = fR(Iact,b), not Oact. 
Then, the difference e = Oact − Oest is a vector of errors 
representing ε (called residuals, with e ≠ ε). The most im-
portant part in modeling is to find the best estimates for 
β. This activity is called parameter estimation, fitting, or 
calibration. For calculating b, there exist some strategies, 
which are based on selecting b so that the function best 
fits the observations (Oact). One way this can be reached is 
by minimizing the sum of squared residuals, e.g., the least 
squares (LS) function. From a practical point of view, the 
minimum of the sum of squares can be found by setting 
the gradient to zero, where the derivative is made with 
respect to each parameter. Therefore, minimizing the cost 
function means solving an equation system of partial de-
rivatives set to zero. If the system equations are com-
posed of a linear combination of the parameters sought, 
the EM is linear in the parameters, and we have a closed 
solution. If the equation system is composed of non-linear 
equations of the parameters sought, the EM is non-linear 
in the parameters and the solution can be found itera-
tively.  
 

3.1.1 Regression assumptions 
To have a closed solution, when applying LS an assump-
tion is required. In particular, fR has to look like the fol-
lowing function, y = β0+ β1x1+ … + βQxQ (or any polyno-
mial quadratic, cubic etc.), where each monomial is a lin-
ear combination of the parameter sought [RAO73], 
[WEISBERG85]. Note that, since the characteristic ex-
pressing the relationship between inputs and output is 
called the model shape, the equation for y has a linear 
shape. For example, a second-degree polynomial is linear 
in the parameters and has a quadratic shape. The LS itera-
tive method does not require that the system of equations 
of partial derivatives is linear in the parameters. This is 
the reason why, this method is applied with estimation 
models that are non-linear in the parameters. The com-
plexity of a model is another characteristic expressing the 
number of parameters composing the model. The more 
parameters, the more complex the model. 

If we want to get the best linear unbiased estimators 
(BLUE) of β (Gauss-Markov theorem [PEDHAZUR97]) 
and use the model for inference, LS requires some as-
sumptions, reported below. We will call these assump-
tions  “regression assumptions” meaning that if they do 
not hold the parameter calculation may be affected by 
error and b would be biased. The regression assumptions 
are: 
(1) Errors ε are not x correlated 
(2) The variance of the errors is constant (homoscedastic-

ity), cov(ε) = σ2I 
(3) Errors ε are not auto-correlated 
(4) The probability density of the error is a Gaussian, ε ∼ 

NID(0, σ2I), i.e. there are no outliers, skewed/kurtotic 
distributions, and measurement error. 

It is worth noting that the LS method does not actually 
require that the probability distribution of the errors is a 
Gaussian. This assumption is required for making infer-
ence (e.g., deriving the confidence and prediction inter-
vals for the model parameters and the variables, see Sec-
tion 3.2). When dealing with real cases some of those as-
sumptions may be violated and the estimators b may be 
biased. The core of this work addresses strategies for dealing 
with estimation models when regression assumptions are vio-
lated. Conversely, if regression assumptions hold, LS es-
timators b have minimum variance and represent a Maxi-
mum Likelihood Estimation (bMLE) to the minimization prob-
lem stated above [PEDHAZUR97]. This means that, the 
parameters of fR correspond to the observed data (e.g., 
y(1)…(N)) having the highest probability of arising. Eqn. (1) 
formalizes this situation. 

 
)b,x,...,x|y,...,y(pmaxargb )N()1()N()1(

bMLE =  . (1) 
 
Where, p(.|..) denotes a conditional probability function, 
which is approximated by pb(y|x,b) having the mean 
µb(y|x,b). Thus if the regression assumptions hold, LS 
and MLE provide the same parameters bMLE (see Markov-
Gauss theorem [MCQUARRIE98]), therefore µb(y|x,b) = 
fR(y|x,b). 
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The main problem with this approach is that if these 
assumptions do not hold, e.g., the probability distribution 
pb(y|x,b) is not Gaussian, the LS method does not yield 
bMLE any more.  

In the literature, however, we can find many examples 
where these assumptions are violated and the closed LS 
technique is applied anyway. Another practical problem 
with using LS concerns the shape of the model. As stated 
above, very often, to simplify the parameter calculation 
and have a closed solution for calculating parameters b, 
researchers and practitioners assume they know the best 
shape between inputs and output, e.g., “[…] we assume 
that the multi-regression function has linear or (log-
linear) shape […]”, when the shape is not known at all. 
For a practical discussion on this approach see [JØRGEN-
SEN04A], and [JØRGENSEN03]. Then, the resulting re-
gression function will no longer be correct (i.e., it is bi-
ased). So, predictions and inferences drawn from this 
flawed model will be inaccurate (i.e., spread may be over-
estimated or underestimated and estimates biased). 
 
3.1.2 Dealing with the consequences of violations 
The reasons why parameters of a regression function may 
be biased, its estimates inaccurate, and the inference 
drawn from it incorrect are the following [MCQUAR-
RIE98]: 
 Variable model error (VrblME): The model is missing 

some relevant variables; hence, it is not able to ex-
plain the output. 

 Redundancy model error (RdndME): The model in-
cludes too many variables that negatively affect the 
correctness of the model parameters 

 Flexibility model error (FlexME): The model is not flexi-
ble enough to represent the relationship between in-
puts and output. For instance, this error can happen 
when we choose models that are linear in the pa-
rameters, e.g. ordinary least squares (OLS) 

 Violation model error (VltnME): The model parameters 
and inferences may be biased because of the violation 
of one or more regression assumptions (see “regres-
sion assumptions” above). 

We use the words “model error” meaning that the error is 
about the incorrect estimation of the model parameters, 
i.e. the error is about the model. 

An estimation model can be used for prediction and in-
ference. When using the model for prediction, we are in-
terested in having estimates as accurate as possible. When 
using the model for inference, we are interested in evalu-
ating the prediction intervals on the dependent variable 
as well as evaluating the confidence intervals on the 
model parameters b. A prediction interval is a range 
where the next estimate will probably fall within a chosen 
confidence level (e.g., 95%) and it is directly related to the 
bias and spread of the prediction error (Section 3.2). In 
this work, we refer to using estimation models both for 
prediction and inference on the independent variable. 
Therefore, based on data previously observed, we aim at 
improving the prediction capability of models over time 
and evaluating correctly the related prediction intervals. 

Improving the prediction capability refers to estimating 
the best model parameters. Correctness of prediction in-
tervals is about finding a way of reducing the error 
brought about by violations of assumptions on which the 
model has been built, e.g. regression assumptions and 
linear complexity.  

To improve parametric estimation models in the sense 
stated above (i.e. increasing the correctness of the model 
parameters and estimating the right prediction intervals 
on the dependent variable of the model), improvements 
can be made for each bullet in the list above. In the cur-
rent section, we mainly refer to improving prediction ac-
curacy, while, in Section 3.2, we show more deeply some 
techniques for evaluating prediction intervals. 

There is not way to deal with VrblME. We must find 
the right variables for the model to be correct. Finding 
good variable candidates can be done by looking at pre-
vious research, asking experts, or inferring missing vari-
ables based on a context analysis. For instance, the ap-
proach proposed in Section 6.1 shows a way of detecting 
what the model is missing and the case study discussed 
in Section 7 illustrates a way of exploiting data coming 
from previous research [PROMISE]. 

There are some techniques for dealing with RdndME. 
The most popular is called stepwise regression, forward 
or backward [MCQUARRIE98]. Of all the possible mod-
els, each having different numbers of variables, stepwise 
regression chooses the one having the most significant 
correlation, i.e., choosing the model having the highest 
adjusted R-squared. The problem is that the variables 
removed might be significant for other situations, e.g., 
future projects. Thus, since we do not know which vari-
ables are least significant, we should take into account all  
models that can be built using all possible combinations 
of variables (i.e., use an exhaustive procedure). For in-
stance, if we have Q variables, there will be 2Q different 
models, because each variable can be included or not (di-
chotomous decision). However, this procedure is usually 
too expensive to be executed in real cases. Instead of con-
sidering individual variables, one can take sets of multi-
ple variables, so that the number of different models that 
need to be considered would be smaller. Although apply-
ing stepwise regression can improve the model parsi-
mony and its accuracy, it requires one more assumption. 
To apply stepwise regression multicollinearity should not 
affect the model. This is a statistical effect where two or 
more variables are highly correlated, i.e. one or more 
variables are redundant, and they can be obtained as a 
(linear) combination of other variables included in the 
model. Stepwise regression is requested when we are in-
terested in knowing which variables actually influence 
the independent variables (e.g., for inference purposes of 
the independent variables). If we use the model for pre-
diction or inference on the dependent variable, other 
techniques of feature reduction can be applied. 

Feature reduction techniques are another way to deal 
with RdndME as well; they find an equivalent configura-
tion composed of less input variables than the initial set. 
Principal Component Analysis (PCA) is one such technique; 
it finds independent linear components, which can be 
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used to express the original variables [JOLLIFE86], [FEN-
TON93]. Curvilinear Component Analysis (CCA) is another 
technique that involves finding both linear and non-linear 
independent components [BISHOP05A, pp. 310-319]. Be-
cause CCA is able to also perform PCA, we will mainly 
focus on CCA. The difference between stepwise regres-
sion and CCA is that the former removes irrelevant vari-
ables so the resulting variables are a subset of the initial 
set; it also assumes non-multicollinearity. CCA removes 
redundancy by turning the initial configuration into a 
more parsimonious one where the resulting variables 
may not correspond to the initial set and it does not as-
sume non-multicollinearity. These techniques are ex-
plained in more detail in Section 6. 

To deal with FlexME, i.e., finding the right complexity, 
the procedure is to (1) consider different families of func-
tions, (2) compare them to each other, and (3) select the 
best, i.e., the one yielding the least generalization error 
(i.e., the expected estimation error). For instance, one may 
consider polynomials with different complexity and for 
each of them calculate the generalization error, hence, 
using the generalization error for selecting the best 
model. The problem is that, we cannot calculate the gen-
eralization error because it requires knowing every point 
of the population. We can only estimate it. Vapnik proves 
that leave-one-out cross-validation (LOOCV) provides an 
unbiased estimate of the generalization error [VAP-
NIK95]. This procedure is explained in Section 6.1. Let N 
be the cardinality of the data set. LOOCV starts with con-
sidering a linear-in-the-parameter model and it goes on 
by increasing the complexity, i.e. it considers non-linear-
in-the-parameter models having an increasing flexibility, 
until a satisfactory condition is met. For each considered 
family of functions having a different complexity (i.e., a 
different number of parameters), LOOCV builds N mod-
els by removing a data point from the data set. Each of 
the N models is trained with N−1 data points and the 
model error is calculated on the data point left out. The 
generalization error estimator is calculated as the average 
of the N errors coming from each individual model 
trained with N-1 points. Usually, the error is the square 
root of the mean squared error (i.e. 

))e()N/1((SQRT 2
h

)h(
h∑ −⋅ , where the h-th residual )h(

he − is 
calculated on the h-th observation left out, with h = 1 to 
N). Because of the LOOCV cost, sometimes k-fold cross-
validation (KFCV) is preferred. However, it does not pro-
vide an unbiased estimation of the generalization error. 
KFCV consists of taking out k data points instead of only 
one and running the same procedure as LOOCV. For 
more details on KFCV see [DREYFUS05]. Note that, com-
paring only polynomial families with different complex-
ity is not enough because polynomials are not indefinitely 
flexible. If we used only polynomials, we may select the 
model having a minimum error relative to the model, but 
we may not be sure that it would be the smallest error 
overall (i.e. among all the possible models). As explained 
above, to avoid the complexity error, we have to increase 
flexibility of the non-linear-in-the-parameter functions 
until the generalization error decreases. We stop increas-
ing the number of parameters, when the generalization 

error increases or keeps the same (i.e., the satisfactory 
condition) [BARRON93]. In other words, the model hav-
ing the best complexity is the most parsimonious one be-
ing flexible enough to explain any relationship between 
inputs and output. To have models with arbitrary flexibil-
ity, we can consider non-linear-in-the-parameter models 
that are a generalization of usual regression models. 

When the size of the sample N goes to infinity, tradi-
tional least squares procedures applied to linear-in-the-
parameter models such as polynomials provide the “true” 
parameters β of the regression function (i.e., they are not 
estimates of β). Conversely, non-linear-in-the-parameter 
models cannot provide the true parameters of the regres-
sion function because there is no closed solution to the 
least squares problem for such models (i.e., there is an 
iterative solution). However, as long as N is finite, linear-
in-the-parameter models are not able to provide the true 
value of the regression function as non-linear-in-the-
parameter models. Then, since a non-linear-in-the-
parameter model can be made indefinitely flexible for a 
fixed number of input variables and a linear one does not, 
the former is more flexible and parsimonious than the 
latter. In fact, operatively we cannot consider models hav-
ing an infinitive number of variables, but we can increase 
the number of parameters of non-linear-in-the-parameter 
models. Fixing the number of variables and increasing the 
number of parameters of the model is the essence of the 
parsimony [BARRON93]. Therefore, in real cases where 
we do not have an infinitive number of variables and ob-
servations, non-linear-in-the-parameter models can pro-
vide better estimates than linear ones (Section 3.6).  

We mainly refer to Multi-Layer Feed-Forward Neural 
Networks (MLFFNN) trained with Backpropagation 
[BISHOP95A], [RUMELHART86], which are non-linear-
in-the-parameter models and they theoretically have an 
infinitive flexibility (Section 3.6). MLFFNN are called ar-
bitrary approximators (or universal approximators) not 
because they provide arbitrary outcomes. The “arbitrary” 
aspect is only about their unlimited flexibility. Applying 
LOOCV and feature selection and/or reduction to 
MLFFNN allows us to find the best non-linear model 
without complexity limitations. This is a suitable way of 
dealing with the flexibility problem. Therefore, if we want 
to avoid the flexibility model error, the only way is to use 
arbitrarily flexible models. Note that, Backpropagation 
does not provide a closed solution to the LS minimization 
problem for calculating model parameters. Backpropaga-
tion is an iterative method that requires some optimiza-
tion technique to make the training process faster. For 
instance, Levenberg-Marquardt is an optimization tech-
nique, which is 60-80 times faster than Backpropagation 
without any optimization [HAGAN94]. Using MLFFNN 
has further benefits than usual regression models. In Sec-
tion 3.6 and 3.7, we will explain it in more detail. Using 
the LS error function with MLFFNN requires similar re-
gression assumptions to linear regression, but it removes 
the limitation about model flexibility and that the model 
variables may be affected by error (i.e., there will be out-
liers or skewed probability distributions). Bishop shows 
that, although the sum-of-squares error function derived 
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from the principle of maximum likelihood, Eqn. (1), does 
not require that the distribution of the dependent variable 
is Gaussian, estimates provided by a model trained by the 
sum-of-squares and a global variance parameter (i.e., the 
variance is assumed to be constant) are the same as the 
ones provided by a model having a dependent variable 
with a Gaussian distribution and the same x-dependent 
mean and average variance [BISHOP95A pp. 201-206]. 
Therefore, if we cannot make any assumption on normal-
ity of variables and errors, we should choose a different 
error function with respect to least squares as we explain 
later in this section. 

Note that, as we will explain in Section 3.6, a MLFFNN 
provides a regression function conditioned to the obser-
vations, i.e. it is exclusively built on the observed data. 
This means that, where this data is not available (i.e., 
across specific intervals), the prediction capabilities of the 
model decrease. If the observed data is “regularly” dis-
tributed, a MLFFNN is able to provide correct estimates 
with a fewer observations than linear models (i.e., usual 
polynomials). In other words, non-linear-in-the-
parameter models can provide higher accuracy than lin-
ear-in-the-parameter models with the same number of 
observations [DREYFUS05]. Moreover, the MLFFNN pre-
diction capability improves as the number of observations 
grows. Therefore, they are models that are consistent with 
learning organizations aiming at improving their estima-
tion capability over time [BASILI92B]. 

When regression assumptions do not hold, we should 
be aware of a number of consequences. The consequences 
may affect both the prediction capability of the model and 
the inference drawn from it, i.e. either bias or spread of 
the estimation model may be incorrect and/or inefficient, 
see Section 3.2 for more details. Therefore, if the model is 
biased, estimates may be incorrect (biased) and prediction 
intervals underestimated or overestimated (inefficient). 
To improve the estimation capability of the model, we 
can use non-linear-in-the-parameter models together with 
LOOCV and feature reduction (e.g., CCA) as explained 
above and in Section 3.6. When trying to improve models 
used for inference (e.g., estimating the expected value and 
spread of the error), the problem is more complicated. It 
is important noting that, when estimating the model pa-
rameters through an iterative procedure such as Back-
propagation, we should consider further uncertainty be-
cause of it. Conversely, prediction intervals would be un-
derestimated. 

With respect to the regression assumptions reported 
above, if (1) errors ε are x-correlated, the expected value 
of the error should be calculated by a regression analysis 
where the independent variables represent the error and 
the independent variables are the same x-variables of the 
estimation model. Obviously, we do not know ε. There-
fore, the best we can do is to use the residuals e instead of 
ε. It is very important noting that, when using a non-
linear-in-the-parameter model along with LOOCV and 
feature reduction such as CCA, the resulting model is 
able to provide the expected value of the dependent vari-
able even if there is no x-correlation. This happens be-
cause of the intercept, which is called bias in non-linear-

in-the-parameter models (Section 3.6). Therefore, as we 
have already mentioned, if we use such an x-regression 
analysis we get correct results even if there is no correla-
tion between the x-variables and the error, parsimony a 
part (Section 3.6). Therefore, we should apply non-linear-
in-the-parameter models for estimating the x-dependent 
expected value of the errors (i.e., the model bias). This 
second regression analysis should be based on as few 
assumptions as possible. For instance, we should start 
with removing the normality assumption, the homosce-
dasticity assumption, and use non-linear-in-the-
parameter models. Note that, the considerations on im-
proving estimation models apply also to the regression 
analysis between x-variables and errors. 

If (2) the model is heteroscedastic, the expected error is 
not offended, but the spread may be inefficient (i.e., type I 
or type II errors may occur). We mean that, spread should 
not be considered constant as it usually is, but it should 
be a function of the independent variables, i.e., σ2(x). 
Since we cannot know σ2(x), we may estimate it, i.e. we 
may calibrate a non-linear-in-the-parameter model r(x,u) 
where r would be a function of variables x and u the pa-
rameter estimators defining the function r calibrated on 
the observations [NIX94]. Therefore, instead of consider-
ing a constant variance parameter, we should use an x-
dependent non-linear function yielding a different vari-
ance value according to the x-values. In particular, Nix et 
al. use just one network with two outputs, one for the 
regression function, and one for the variance [NIX94]. 
This technique acts as a form of weighted regression that 
aims at weighting in favor of low-noise regions. Note 
that, weighted regression is also available for linear-in-
the-parameter models [WHITE80]. The problem is that 
weighted regression can eventually reduce the impact of 
heteroscedasticity, but it is not able to remove it com-
pletely. This means that, we need further improvement 
techniques when the sample is heteroscedastic rather than 
applying only linear or non-linear weighted regression. 

In literature, there exist further methods to deal with 
this problem. The most known method is called bootstrap 
[EFRON93, pp. 313-315]. It is based on a resampling pro-
cedure. The method provides an x-dependent prediction 
interval, which behaves better than the delta method pre-
viously applied. Bootstrap can be applied both with non-
linear and linear-in-the-parameter models and it applies 
to parametric and non-parametric distributions [MOJIR-
SHEIBANI96]. The problem with using the bootstrap 
method is the cost of resampling to get suitable prediction 
intervals. An example of the bootstrap application is pro-
vided in [ANGELIS00] where the authors show an appli-
cation of bootstrap to software cost estimation by analo-
gies. 

A completely different approach for inferring the 
spread of the dependent variable is provided by MacKey. 
He uses the Bayesian framework for evaluating predic-
tion intervals of non-linear-in-the-parameter models 
[MACKEY91]. This framework estimates the variance of 
the dependent variable by exploiting posterior probability 
distributions instead of a priori distribution as is usually 
done (see Bayesian theorem in Section 3.7). Instead of 
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considering only a single value for a model parameter, as 
in the maximum likelihood estimate, Eqn. (1), Bayesian 
inference expresses the variability of the dependent vari-
able in terms of posterior probability distributions and 
integrates the interesting subset of the distributions 
[MACKEY91], [HUSMEIER04, pp. 18-20]. The primary 
importance of the Bayesian framework is the fact that the 
uncertainty of the dependent variable depends not only 
on the most probable model (i.e., the one having parame-
ters bMLE), but also on the probability distributions of 
models that can be built with the sample. However, even 
though the MacKey’s solution is theoretically correct, it 
has some practical complications. The problem is evaluat-
ing the integral that sums the overall uncertainty of every 
model. In order to handle the integral, we have to make 
further assumptions, such as the normality of the predic-
tion error distribution and the prior weight distribution. 
Moreover, MacKey considers the sample variance to be 
constant, even though it may be x-dependent. Bishop et 
al. [BISHOP95B] extend MacKey’s analysis by consider-
ing an x-dependent variance of the error. For a complete 
explanation of these techniques, see [HUSMEIER04] and 
[BISHOP95A, Chapter 11]. In our analysis, where we 
would like to make as few assumptions as possible, and 
exploit methodologies that are easy to apply and figure 
out, MacKey’s solution cannot be used as is. In Section 
6.1, we will define an empirical approach based on Bayes-
ian analysis for evaluating the variance of the dependent 
variable without making any specific assumption about 
the underlying probability distributions. Moreover, it is 
important to note that, since errors ε (i.e. the aleatory part 
of the estimation model) are unknown, we have to use the 
residuals e = (Actual – Estimated) to investigate whether 
the homoscedasticity holds or not. The problem is that, in 
software engineering we know that the residuals grow as 
project size increases, (e.g., software cost estimation). 
Then a relative measure of the residuals RE = (Actual – 
Estimated)/Actual, i.e. a measure weighted by the actual 
value, should provide better results both for linear and 
non-linear models. In Section 3.2, we present some hints 
about the right way of choosing an error measure. 

If (3) errors are auto-correlated, the parameters b are 
unbiased but the spread may be unreliable (type I or type 
II errors may occur). This kind of error can be removed by 
considering two different approaches, using Autoregres-
sive Conditional Heteroscedasticity (ARCH) models 
[ENGLE82] or the Two-Stage Regression Procedure 
(TSRP) [GREENE97]. We do not deal with this kind of 
improvement because software engineering data is not 
usually time-series correlated as occurs with financial 
data. 
If we run an auto-correlation statistical test (e.g. Durbin-
Watson) and find time-series auto-correlations, we can 
infer that the auto-correlation is determined by chance 
and so we do nothing. Conversely, if there is an auto-
correlation effect, we can remove it by applying ARCH or 
TSRP. If there is a non-time-series auto-correlation we can 
remove the auto-correlated observations from the data set 
used for calibrating the estimation model. 

If (4) errors are not normally distributed with ε ∼ 

NID(0, σ2I), b may be unbiased, but E(ε) may be different 
from zero and the percentiles of neither t-student nor z 
distributions may be good representatives of the popula-
tion. Therefore, better spread measures are calculated by 
non-parametric statistics (Section 3.2). 

Actually,  when the normality assumptions does not 
hold, instead of calculating the x-dependent mean we 
may calculate the x-dependent median, which would bet-
ter represent the expected value of the dependent variable 
y = fR(x,b). The x-dependent median can be obtained by 
minimizing a different error function from LS. This kind 
of approach is based on robust statistics [HUBER81], [MI-
YAZAKI94]. These techniques try to reduce the influence 
of outliers on the model parameter calculation. When 
using MLFFNNs, it is possible to calculate a (conditional) 
median instead of a (conditional) mean by minimizing the 
Minkovski-R error with R = 1, Eqn. (2).  

 
∑ −=
N

)N(try)y(E
 . (2) 

 
Where y is the estimate and tr is the actual value over N 
observations. Minimizing the error function (2) with re-
spect to y gives Eqn. (3). 

 
∑ =−
N

)N( 0)try(sign
 . (3) 

 
The expected error is satisfied when y is the median of the 
points {trn} [BISHOP95A, p. 210]. 

To deal with the measurement error affecting the vari-
ables, there is little that we can do. The only option is to 
avoid the assumption of the normality of the probability 
distributions and apply a robust regression as explained 
above. 

 
TABLE 1 

IMPROVING INFERENCE OF LINEAR AND NON-LINEAR MODELS 

 
(1) fe is a non-linear regression function treated with LOOCV and CCA, e = 
residuals, x = independent variables of the model. (2) Variables x are the same 
as the EM. (3) Autocorrelation does not usually affect software engineering 
variables. If does, use ARCH models or TSRP. 

 
Table 1 shows the regression assumption violations 

(left side) and the corresponding improvement to the bias 
and spread of the model (right side). 
 
3.2 Risk, uncertainty, and accuracy indicators 
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So far, we have seen that, to improve estimation models 
we have to use models that are non-linear in the parame-
ters because they can be made indefinitely flexible. When 
using non-linear-in-the-parameter models for inference 
(e.g., evaluating variance of the dependent variable), the 
problem is more complicated than using linear models 
because of their non-linearity, i.e. for each function consti-
tuting the model there is a higher number of parameters 
than for linear models where there is only one parameter. 

In this section, we delve into the details of the problem 
of making an inference when regression assumptions are 
violated. Practically, we have to evaluate the variance of 
the dependent variable, when using linear and non-
linear-in-the-parameter models. Therefore, we are inter-
ested in analyzing the relationships existing between the 
estimated spread (i.e. a mathematical quantity) and the 
risk (i.e. a software engineering quantity). We will use 
software cost estimation models as our primary example 
for exposition, because of the large amount of associated 
research. Slightly different measures might be considered 
for other estimation models, but the main ones are re-
ported in this section. For a complete explanation, see 
[MYRTVEIT05], [KEMERER87]. 

 
3.2.1 Risk and uncertainty 
We define risk in applying an estimation model as the 
uncertainty measure of getting a wrong estimate (i.e. the 
estimate falls out of the stated prediction interval). For 
evaluating whether an estimate is wrong, we can look at 
its accuracy. In fact, an estimate is accurate when it is cor-
rect and valid. Estimation correctness refers to the capa-
bility of being as close to the actual value as possible and 
estimation validity refers to the capability of being stable 
over a number of trials. To quantify the uncertainty, we 
need to study the deviation between the actual and esti-
mated value in a significant number of trials. This devia-
tion is called error and the observation set over the trials 
is called the error sample. Mathematically, there exist 
many equivalent ways of estimating the uncertainty in 
applying an estimation model. To this end, let us consider 
the definition of error measure. 
 
3.2.2 Error measures and accuracy 
There exist many different measures of error. Some are 
reported below. We can define i-th measure of an abso-
lute error as follows: 

 
est

i
act

ii OOAE −=  . (4) 
 

Where estO  stands for act
estO , i.e. an estimate obtained us-

ing actual inputs, and actO  stands for its actual value. 
Then, DAE = {AE1, AE2, …, AEN} is a sample of errors and 
N is the sample size. As stated above, we prefer to deal 
with a relative error (RE) [BOEHM81], Eqn. (5), because 
in software estimation, the absolute error grows as the 
size of the project increases (i.e., the variance is not con-
stant), and a weighted measure should be preferred. The 
relative error on i-th data point is: 
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i

est
i
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i

i

O
OORE −

=
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Then, DRE = {RE1, RE2, …, REN} is a sample of errors and 
N is the sample size. Note that, the RE’s variability inter-
val is ]-∞;1] because the estimated output (Oest) varies in 
[0; +∞[, where ]a;.b] is a left-open interval and [a; b[ is a 
right- open interval. The problem is that, a relative meas-
ure cannot avoid bias and hetheroscedasticity of an esti-
mation model. Moreover, RE may be correlated with 
other context factors [STENSRUD02], [JØRGENSEN04A] 
therefore its expected value would be better expressed by 
a regression function on those factors. Actually, the prob-
lem with the heteroscedasticity has never been solved. In 
fact, one of the most violated assumptions when applying 
LS is to consider the error distribution homoscedastic, 
while it is not [JØRGENSEN03]. 

Another used measure is the Balanced RE (BRE) de-
fined by Miyazaki et al. [MIYAZAKI94], Eqn. (6):  

 

}{ est
i

act
i

est
i

act
i

i

O,OMIN
OOBRE −

=
 . (6) 

 
Then, DBRE = {BRE1, BRE2, …, BREN} is a sample of errors 
and N is the sample size. Miyazaki et al. argue that BRE 
may have properties that lead to better evaluations for 
some data sets. Unfortunately, it does not happen for 
every sample [JØRGENSEN04A]. BRE is slightly different 
from RE because it is not limited on the right side. Both 
RE and BRE can distinguish between underestimates and 
overestimates therefore they can both be used for the 
purposes of the approach presented here. 

Once we define the error measure, we can evaluate the 
accuracy and consequently risk and uncertainty. This task 
consists of calculating some statistics over the error sam-
ple such as mean and standard deviation [JØRGEN-
SEN03]. For instance, the error mean is a bias measure 
and the error standard deviation is a spread measure. 
This happens when the considered error measure is able 
to distinguish between overestimate and underestimate. 
This is not always the case. Conte et al. [CONTE86] pro-
posed an error measure based on MREi = abs(REi). Then, 
DMRE ={MRE1, MRE2, …, MREN} is a sample of errors and 
N is the sample size of a test set. Based on MRE, they 
proposed two statistics, MMRE and PRED(H). MMRE is 
the mean of DMRE, i.e., MMRE = Mean (DMRE) = Mean 
(MREi) for i = 1 to N and PRED(H) is the percentage of 
estimates within a given error H. For instance, PRED(25) 
= 80% means that  80% of the estimates fall into an error 
of 0.25. Kitchenham et al. [KITCHENHAM01] showed 
that neither MMRE nor PRED(H) can be used for com-
parison because MRE is not able to separate bias and 
spread. Therefore, the MMRE is not a bias measure and 
its standard deviation is not a spread measure. In particu-
lar, those statistics measure spread and kurtosis of the 
random variable Z = Estimated/Actual, respectively. 
However, MMRE may be considered as a goodness-of-fit 
measure of a model. 
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3.2.3 Uncertainty measure for a univariate case 
To quantify the uncertainty then, we need an error meas-
ure that allows separating bias and spread such as AE, RE 
or BRE (note that, we use AE, RE, and BRE instead of AEi, 
REi and BREi to simplify the notation). As explained 
above, we will mainly consider RE and BRE because, in 
software cost estimation, AE grows as the project size 
increases. If we know the population probability distribu-
tion from which the sample has been sampled (e.g., nor-
mal distribution), we may use the mean and standard 
deviation as a bias and spread measure, respectively 
[JØRGENSEN03]. To calculate an estimate prediction in-
terval (i.e., quantifying the uncertainty of an estimation 
model), the strategy consists of considering N measures 
of error (RE or BRE) and calculating an interval where the 
error of the next estimate will fall with 90% (or 95%) con-
fidence. We call this interval (two-tail) error prediction in-
terval, i.e., [µDOWN; µUP], see Eqn. (7). Based on the error 
prediction interval, we can apply Eqns (9), (10) or (11), see 
below, and calculate the estimate prediction interval, for RE, 
BRE and AE, respectively. We use [ 1N

DOWN,estO + ; 1N
UP,estO + ] to 

point out an estimate prediction interval. See Section 3.6 
for more details [JØRGENSEN03]. Note that, (7) is a 90% 
confidence interval, which corresponds to the 95th percen-
tile of the Student’s distribution with (N—1) degrees of 
freedom, i.e., t0.95(N—1).  

 

],[1
N
1S)1N(tX UPDOWN95.0 µµ=+⋅−±

 . (7) 
 

Where, X  and S are the sample mean and standard de-
viation of the error distribution (e.g., RE), respectively. 
This happens because the t-Student’s distribution quan-
tile that we have to consider is obtained by the formula 1 - 
α/2 = 1 - 0.1/2 = 1 - 0.05 = 0.95, where α is the required 
confidence level. 

Note that, the prediction interval is wider than the con-
fidence interval for the mean of the error population, Exn. 
(8).  

 

N
1S)1N(tX 95.0 ⋅−±

 . (8) 
 

In fact, it is narrower than the prediction interval because 
the error of the next estimate, X(N+1), is variable, while the 
mean is constant [MCQUARRIE98]. Once we get the error 
prediction interval, i.e. Eqn. (7), we can calculate the esti-
mate (e.g., the effort) prediction interval as explained 
above. If we consider RE as an error measure, we have to 
apply Exn. (9). 

 

RE1
O 1N

est
−

+

  . (9) 
 

Because of the sign ± in Eqn. (7), RE in Exn. (9) gets two 
values, as well, i.e. RE = {µDOWN, µUP}. Then, the estimate 
prediction interval proposed by Jørgensen et al. is 
[ )1/(O);1/(O UP

1N
estDOWN

1N
est µ−µ− ++ ]. Considering BRE, we 

have to apply Exn. (10) [JØRGENSEN03].  
 

BRE1
O 1N

est
−

+
, if BRE ≤ 0 

 

 (10) 

)BRE1(O 1N
est +⋅+ ,  otherwise. 

 

Where BRE = {µDOWN, µUP} calculated through Eqn. (7) 
over DBRE. Exn. (10) provides two values as shown above. 
For completeness, we reported the formula for AE as 
well, i.e. Exn. (11). 
 

AEO 1N
est ++   . (11) 

 
Exn. (11) provides two values, as well. 

For simplicity of notation, we use [µDOWN; µUP] to de-
note an error prediction interval and [ 1N

DOWN,estO + ; 1N
UP,estO + ] 

to denote the corresponding estimate prediction interval. 
As a summary, the prediction interval technique for 
quantifying the uncertainty that we have just presented 
[JØRGENSEN03] is based on (1) selecting a relative error 
measure that can separate spread and bias, (2) gathering 
the estimation errors, (3) calculating a prediction interval 
of this error sample, and (4) obtaining the corresponding 
estimate prediction interval. This technique can be ap-
plied even if the probability distribution of the errors is 
not known and Eqn. (7) cannot be used for calculating the 
error prediction interval. 

It is important noting that, so far we have considered 
two kinds of uncertainty measures. One based on an error 
prediction interval [µDOWN; µUP] and the other based on an 
estimate prediction interval [ 1N

DOWN,estO + ; 1N
UP,estO + ]. They are 

strictly correlated because each can be obtained from the 
other. However, the estimate prediction interval, i.e., 
[ 1N

DOWN,estO + ; 1N
UP,estO + ], may be misleading when dealing 

with relative error measures such as RE or BRE and it 
does not allow figuring out the real improvement that an 
estimation model needs. We show this situation through 
an easy example. 

To this end, assume that the next estimate is  1N
estO +  = 

45 Person-Months (PM) and the error prediction interval 
provided by Eqn. (7) is [µDOWN= - 0.4; µUP = -0.1]. The mag-
nitude of this interval is |-0.4 – (-0.1)| = 0.3 PM. Apply-
ing Exn. (9), we can calculate the effort prediction interval  

1N
DOWN,estO +  = 45 / (1-(-0.4)) = 45/1.4 = 32.1 PM and 1N

UP,estO +  
= 45 / (1-(-0.1)) = 45/1.1 = 40.9 PM. Therefore, the effort 
prediction interval is [32.1; 40.9]. The magnitude of this 
interval is |40.9 – 32.1| = 8.8 PM. Consider now the error 
prediction interval [µDOWN= - 0.1; µUP = 0.2] and the same 
estimate as before, i.e. 1N

estO +  = 45 PM. The magnitude of 
this interval is |-0.1 – 0.2| = 0.3 PM, the same as before. 
Applying Exn. (9), we can calculate the effort prediction 
interval  1N

DOWN,estO +  = 45 / (1-(-0.1)) = 45/1.1 = 40.9 PM 
and 1N

UP,estO +  = 45 / (1-(0.2)) = 45/0.8 = 56.3 PM. Therefore, 
the effort prediction interval is [40.9; 56.3]. The magnitude 
of this interval is |56.3 – 40.9| = 15.4 PM. Although the 
two error intervals had the same magnitude (i.e., 0.3) and 
the estimate was the same, they generated two different 
magnitude of estimate prediction intervals (i.e., 8.8 and 
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15.4). For this reason, when focusing on performance of 
the EM for improvement purposes, we have to consider 
error prediction intervals [µDOWN; µUP]. When focusing on 
the prediction activity, we use the estimate (effort) predic-
tion interval [ 1N

DOWN,estO + ; 1N
UP,estO + ]. 

 

 
 

Fig. 4.Median and Interquartile range as non-parametric measures. 

It is important noting that, to apply Eqn. (7), we made 
some parametric assumptions on the error distribution, 
i.e., we assumed that, it has been sampled from a normal 
distribution (with unknown variance), where its bias and 
spread are well represented by the sample mean ( X ) and 
sample standard deviation ( S ), respectively. The para-
metric assumptions support also the idea that mean and 
standard deviation are constant with respect to other con-
text variables, i.e. the variation of other context variables 
(e.g., size, complexity) do not affect bias and spread of the 
error. 

Consider now a more realistic situation, where we do 
not know the population from which the error sample has 
been sampled, e.g., there are few observations and/or the 
probability distribution is not Gaussian. This means that, 
if parametric assumptions do not hold (i.e., there is a sig-
nificant number of outliers, the distribution is heavily 
skewed and/or multimodal), better measures of bias and 
spread are the median and the interquartile range (IQR), 
respectively (Fig. 4). 
 

 
 

Fig. 5. Empirical Distribution Function (IQR). 

The median is able to split up observations into two 
sets having the same number of elements. The IQR is 
based on considering the most probable range where the 
next error estimate will fall (Fig. 5) by taking out the out-
liers. The IQR can be derived by the empirical distribu-
tion (Fig. 5). Both the median and the IQR are less sensi-
tive to outliers. In fact, the IQR provides a range corre-

sponding to 50% of the observations (between the first 
and third quartile) of the empirical distribution. It would 
be a 50% prediction interval of the empirical distribution. 
Note that, IQR is used to build the box-and-whisker plot, 
which is a non-parametric tool. 
 

 
 

Fig. 6. Empirical Distribution Function (90% confidence). 

 IQR takes into account only 50% of the frequency, 
omitting the frequency in the upper and lower tails (first 
and forth quartile), to avoid that the resulting error range 
is affected by outliers, which are usually in the end-tails 
of the distribution. We take the 50% frequency (IQR) 
rather than a wider extent (e.g., 90% or 95%) to avoid out-
liers that can affect the calculation of the error prediction 
interval. 

Some researches use a 90% or 95% error prediction in-
terval instead of using the IQR [JØRGENSEN03] to calcu-
late a non-parametric prediction interval, when outliers 
are not assumed to heavily affect the model. For instance, 
to calculate a 90% prediction interval, one can consider 
the 5th and 95th percentile of the error empirical distribu-
tion, in the y-axis in Fig. 6, and select the corresponding 
error value in the x-axis. A 90% prediction interval is 
wider than an IQR prediction interval; hence, is more 
likely to include the actual error. But, apart from outliers, 
the problem with considering a wider confidence is the 
utility of the resulting interval of error. If the error predic-
tion interval is too wide, project managers may not use it 
in real estimation tasks. Utility is further explained below 
in this section. Choosing IQR, 90% or 95% prediction in-
tervals, depends on the problem that we are dealing with 
and the assumptions made. If we know that, there are 
many outliers, it is better to consider the IQR. If the dis-
tribution has fewer outliers, a 90% (or 95%) prediction 
interval would be better. Since the magnitude of the con-
fidence level (e.g., 50%, 90%, 95%) and risk are in inverse 
proportion, i.e., the confidence level grows as the risk 
decreases and vice versa, an organization aiming at earn-
ing a contract should decrease the confidence by increas-
ing the risk. Choosing a lower confidence level, the error 
prediction interval would get smaller and more useful 
(i.e., narrower). The decision to fix this threshold should 
be made at the highest management level of the organiza-
tion based on the organization strategy [KITCHEN-
HAM97]. The rate to which an organization earns con-
tracts should be tracked for prospective evaluation 
[BASILI92B] and encapsulated into an experience package 
in the experience base of the organization [BASILI92B]. 
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3.2.4 Uncertainty measure for a multivariate case 
So far, we have dealt with quantifying the uncertainty 
and risk for a univariate case through a prediction inter-
val-based approach taking into account the relative errors 
between estimates and actual values. Consider now a 
multivariate distribution where a variable (y) depends on 
other variables (x1, …, xQ). We now deal with risk and 
uncertainty when using a linear-in-the-parameter estima-
tion model as explained in Section 3.1 (e.g., polynomial 
models). The problem is to find the x-dependent mean of 
y and quantify its variance (uncertainty). If the regression 
model relies upon regression assumptions (Section 3.1), 
the prediction interval is readily available, Exn. (12) 
[RAO73], [WEISBERG85]. 

 

'x)XX('x1S)1QN(t)'y( 1TT
2/1

−
α− +⋅−−±  . (12) 

 
Where:  
- y’ = fR(x’,b) = b0+ b1x’1+ … + bQx’Q = bx’ is the ex-

pected value (mean) of the dependent variable (y) 
when the independent variables get a specific value 
x’ = (x’1, …, x’Q)T, i.e., (x1 = x’1 …, xQ = x’Q) 

- t1-α/2(N-Q-1) is a two tail t-value (Student’s percentile) 
with N-Q-1 degrees of freedom  

- X is the observation matrix of independent variables 
where the first column is composed of only 1s 

- N is the number of observations 
- Q is the number of the independent variables 

- MSE
1QN
Y)HI(YS =

−−
−

=
T

 is an unbiased 

estimator of the standard deviation of the population (σ) 
[RAO73], [WEISBERG85] 

- Y is the observation vector of the dependent variable 
- I is the identity matrix 
- H = X(X T X) -1X T Y 
     MSE stands for Mean Squared Error. 

The insight provided by Exn. (12) is that it calculates a 
two tailed (1-α)% confidence prediction interval of y’= 
βX’ when the model is fed with the vector x’. The Exn. 
(12) calculation is the same as Eqn. (7) for a multi-linear 
regression function (i.e., a multivariate sample) under the 
regression assumptions reported in Section 3.1. This ex-
pression is quite similar to the prediction interval ap-
proach for a univariate case [JØRGENSEN03]. Both ap-
proaches use the variability of the error to calculate the 
estimate prediction interval. In particular, the variance of 
y per y = y’ is assumed constant and the same as the vari-
ance of the residuals. 

Once we calculate the error prediction interval, we can 
calculate the effort prediction interval through Exn. (9), 
(10), or (11). Those formulas can also be considered as a 
sort of correction used to make the estimates unbiased 
[KITCHENHAM97]. For instance, with respect to Exn. (9), 
if the error bias was zero (i.e., RE = 0), then Exn. (9) would 
be 1N

est
1N

est O)01/(O ++ =− , i.e. the estimate would not 
be corrected at all. Similar considerations can be made for 
Eqns. (10) and (11). 

To calculate a two-tail (1-α)% confidence interval for 
the mean there is Exn. (13) [RAO73], [WEISBERG85]. 
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where, the symbols have the same meaning as the ones 
reported for Exn. (12). Note that, Exn. (13) provides a nar-
rower interval than Exn. (12) because the mean is con-
stant, while the next estimate is variable. 

If the error prediction interval is too wide, it may de-
pend not only on the error variance, but also on the effec-
tiveness of the method of calculating the prediction inter-
val. For instance, the Chebyshev’s inequality method and 
the non-parametric ones, usually (Section 3.5) lead to  
intervals that are too wide, apart from the actual variance 
in the data. We need an effective method for estimating 
error prediction intervals as narrow as possible. 

In Section 3.1, however, we showed that, to improve 
the correctness of the model we should use non-linear-in-
the-parameter models because of their arbitrary flexibil-
ity. Therefore, to exploit the improvement coming from 
non-linear-in-the-parameter models, we need to calculate 
prediction intervals for those models, as well. If paramet-
ric assumptions hold, formulas for calculating prediction 
intervals are rightly available. For non-linear models, a 
slightly different formula can be applied [HUSMEIER04]. 
The formula for calculating PIs of MLFFNNs is  

))x(g)JJ()x(g1(S)1KN(t)'y( 1TT
2/1

−
α− +⋅−−± , where 

y’ = fR(x’,b) is the expected value (mean) of the dependent 
variable (y) when the independent variables get the next 
value x’ = (x’1 … x’Q)T. t1-α/2(N-K-1) is a two tail t-value 
(Student’s percentile) with N-K-1 degrees of freedom. N 
is the number of observations, K is the number of pa-
rameters (note that K > Q).  

MSE
1QN
Y)HI(YS =

−−
−

=
T

 is an unbiased esti-

mator of the standard deviation of the population (σ). Y is 
the observation vector of the dependent variable. g(x) is a 
vector whose i-th element is the partial derivative 
∂fR(x’,b)/∂bi evaluated at its true value. J is a matrix 
whose ij-th element is the partial derivative ∂fR(xi,b)/∂bj. 
Matrix J can be calculated iteratively through the training 
procedure (i.e. Backpropagation) [BISHOP95A]. How-
ever, calculating prediction intervals for MLFFNNs when 
regression assumptions do not hold is still an open prob-
lem. 
 
3.2.5 Model evaluation trough uncertainty 
To illustrate the utility concept of an error prediction in-
terval, we use an easy example picked from a different 
environment than software engineering. The environment 
is a package delivery service. Assume that, a truck is moving 
from Seattle (WA, USA) to Boston (MA, USA) to deliver 
some packages. To know the actual position of the truck, 
the receiver, in Boston, uses a locator system, which 
automatically provides two points on the planned route 
where the truck is moving at a specific time. For instance, 
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the locator system is able to provide [PointA, PointB, 
TimeA-B], which means that the truck may be in any point 
between PointA and PointB on the planned route at time 
TimeA-B. For instance, assume that the locator system pro-
vides [Minneapolis (MN, USA), Albany (NY, USA), 
6:30am EST]. Although this piece of information is correct 
(i.e., the truck is actually between Minneapolis and Al-
bany), it is useless because the receiver cannot know with 
a suitable approximation how far the truck is from the 
destination point. Since there are about 1,200 miles be-
tween Minneapolis and Albany and every point in the 
interval is equally probable, the information provided 
cannot be used for inferring the actual position with a 
suitable approximation. This situation is very close to the 
prediction interval situation here.  

If the methodology for calculating prediction intervals 
provides too wide an interval, we may no longer use it as 
a reliable reference to quantify the actual limits between 
which the actual error will fall. This means that, quantify-
ing risk and uncertainty through an error prediction in-
terval is always possible, but the interval is useful for 
prediction only if its magnitude lies within specific 
thresholds. 
 

 
 

Fig. 7. Acceptability of error prediction intervals. 

To explain the acceptability concept, we will use Fig. 7 
to identify the spread and bias in relative error measures. 
From a mathematical point of view, the acceptability of a 
measure is affected by spread and bias in the error predic-
tion interval. This information is very important to figure 
out whether and how to improve an estimation model 
and quantify its uncertainty. An error prediction interval 
is unbiased, if it includes zero ([a] and [b]). It is biased 
otherwise ([c] and [d]). A prediction interval is useful if it 
is within stated thresholds ([a] and [c]). It is useless oth-
erwise ([b] and [d]). A prediction interval is acceptable if 
it is useful and unbiased at the same time ([a]). It is unac-
ceptable otherwise ([b], [c], and [d]). Based on Fig. 7, we 
can infer whether the estimation model is prone to over-
estimate or underestimate. For instance, an estimation 
model overestimates when its prediction interval broaden 
towards negative values of the error (Fig. 7, [b]). If the 
prediction interval broadens towards positive values (Fig. 
7, [d]), then the estimation model underestimates. 

Therefore, an EM yielding an acceptable error predic-

tion interval does not need any improvement. Con-
versely, an unacceptable interval requires some im-
provement. Thus, the meaning of an acceptable error pre-
diction interval is not that, it cannot be improved, but it 
means that, based on the organization’s goals and strat-
egy, the improvement is not requested. Note that, we use 
the world “useless” not to say that we cannot take advan-
tage of this piece of information for improvement (i.e., the 
fact that the error prediction interval is too wide). Actu-
ally, too wide an interval represents an unacceptable 
anomaly in the model and it needs to be improved, e.g., 
we are missing some values, variables or some measure-
ment error occurred. This consideration is based upon the 
fact that, a model is a limited representation of reality 
hence can be always improved. For this reason, first we 
have to figure out whether the model yields acceptable 
estimates or not. If the model is assumed to provide unac-
ceptable estimates, we may improve it only if we know 
the causes of its unacceptability. Fig. 7 can show these 
improvement needs. When dealing with biased intervals, 
the model is incorrect, e.g., it is missing some important 
variables or it is not flexible enough (i.e., not able to fit the 
data), and a different model should be used. 

 
3.2.6 Similarity analysis and scope error 
To get the estimate prediction interval from the error pre-
diction interval, we apply one of the Eqns (9), (10), or (11) 
depending on the error measure that we choose. Apply-
ing Eqns (9), (10), or (11) means correcting, on the aver-
age, the estimate from its bias, i.e., making the estimate 
unbiased. In this case, to improve the estimates, we 
mainly have to worry about situations [b] and [d] in Fig. 7 
(i.e. too wide an error spread). However, if we aim at im-
proving the estimation model itself, e.g., making the error 
prediction interval acceptable (unbiased and useful), we 
have to deal with every situation in Fig. 7, i.e., shrinking 
the error prediction intervals and removing the error bias. 

Recognizing bias is quite easy (i.e., checking whether 
the error interval includes zero or not), while fixing the 
utility is more complicated. The utility (i.e., the threshold 
in Fig. 7) is a subjective characteristic that varies from 
organization to organization based on the required reli-
ability, characteristics of the market (competition), and 
strategies pursued from the organization’s goals. Utility 
thresholds should not vary with the size of the estimate 
when dealing with relative error measures, i.e., the sever-
ity of an error should be the same for any projects being 
estimated when considering relative errors. We will see 
that this is not always true. The analysis in Fig. 7 is the 
basis of the strategy that we will define in Section 6.1 for 
evaluating the risk and improving EMs over time. It is 
worth noting that, Fig. 7 is incomplete because it does not 
deal with the risky situation described by Kitchenham et 
al. [KITCHENHAM97] called scope error. It may happen 
when the EM is requested to provide estimates on data 
never observed before, i.e. the EM has not been calibrated 
on data close to the project data being estimated. This 
situation should be considered from project managers as 
a severe (risky) one because, if we never dealt with the 
similar projects as the ones being estimated, the predic-
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tive capabilities of the EM may be unpredictable. To this 
end Kitchenham et al. [KITCHENHAM97] propose ap-
plying the portfolio concept (Section 5), where the organi-
zation deals only with specific segments of the market, 
e.g., medium size software systems for banking environ-
ment.  

From a theoretical point of view, applying the portfolio 
concept deals with  scope error because the projects being 
estimated are similar to the past projects, so the expected 
accuracy of the estimation model in estimating the new 
projects would be known. However, the portfolio strategy 
is based on the assumptions that (1) the organization has 
sufficient information to execute the grouping task and 
build the portfolio and (2) that there are a sufficient num-
ber of past projects in the portfolio. Modern organizations 
may have to deal with projects having different character-
istics from their experience. Our approach allows an or-
ganization to take advantage of every piece of informa-
tion on past projects for prediction and improvement. 
Organizations need to group past data into sets of similar 
projects. We call this grouping as similarity analysis, i.e. 
quantifying the degree of similarity between the project 
being estimated and the past data used for calibrating the 
considered estimation model. Note that, Jørgensen et al. 
[JØRGENSEN03] use the name “similarity analysis” in a 
slightly different way. They group the past observations 
(i.e., projects) having the same expected degree of estima-
tion uncertainty as “similar” the project being estimated. 
Then, they assume to be able to do that. The similarity 
that we are referring to is more properly about grouping 
observations that are of similar type (i.e., they have 
close/same values for the same variables) and conse-
quently getting the expected uncertainty from each 
group. We explain this concept through an example 
(Table 2). 
 

TABLE 2 
SIMILARITY ANALYSIS – PAST OBSERVATIONS (ACT) 

 

 
 
In Table 2, there are two project sets having their own 
error prediction interval (Error PI). In Table 3, there are 
three estimated projects, i.e. they are described by esti-
mated values. We are interested in knowing, for each pro-
ject, the prediction interval where the error will fall. If our 
estimates are correct (e.g., estimates for KLOC, Cplx, and 
Effort), P1 can be classified as belonging to set A, there-
fore the expected error prediction interval would be the 
same as [-0.30; 0.20]. Project P2 has some characteristic 
close to set A (i.e., KSLOC = 20) and some characteristic 
close to set B (i.e., Cplx = ‘Low’). How much is “close”? 
This uncertainty situation on project P2 is workable.  
 

TABLE 3 
SIMILARITY ANALYSIS – PROJECT BEING ESTIMATED (EST) 

 
 
For instance, we can consider an error prediction interval 
as the union of the A and B prediction. The union of two 
distinct ordered sets is wider than each individual set. As 
a result, the estimation uncertainty of the estimate of pro-
ject P2 grows. 

Consider project P3. This represents a different situa-
tion from the previous ones. We do not have any charac-
teristic similar to set A and B even though we may argue 
that KLOC = 40 is in between KLOCs of set A and B, and 
Cplx = “Very High” is closer to “High” than “Low”. 
Then, estimating project P3 with the considered EM is 
additionally risky. That is, this situation is in addition to 
the ones in Fig. 7 and refers to a possible scope error.  

Therefore, if we used the EM for estimating P3 we may 
have some unpredictable spread error. From a practical 
point of view, project managers would have to recognize 
whether a scope error could happen or not and conse-
quently evaluate risk and uncertainty for situations simi-
lar to the ones in Fig. 7. To this end, the estimate of project 
P3 should be considered as more risky than the estimate 
of project P2 even though we may not quantify the error 
prediction interval for P3. Note that, the scope error does 
not affect the EM parameters. It is about using the EM 
improperly. The scope error is a risky situation because 
we do not know the error prediction interval for similar 
projects even though we may state some rough limits (not 
very accurate); therefore, the risky situation arises from 
the fact that, we use an EM without knowing its actual 
risk. Recognizing the scope error is not so easy when 
dealing with a number of variables. As an example, con-
sider the situation where instead of having only one vari-
able as in Table 2 (i.e., Cplx) in addition to Effort and 
KSLOC, we had 15 variables, as the COCOMO model, 
and for each of them, there were, for instance, five values. 
Then, there would be 515 = 30,517,578,125 different sub-
sets to be considered in addition to the ratio scale vari-
ables. Note that, many of those subsets may have the 
same uncertainty, so the number of distinct uncertainty 
intervals may be much less than 515. However, the huge 
number of elements shows that recognizing whether or 
not a scope error occurs, project managers need evalua-
tion systems, which are able to provide a similarity meas-
ure automatically; otherwise they will not be able to fig-
ure out the real prediction risk. 
 
3.2.7 Assumption error and risk exposure 
So far, we have defined mathematically the risk in apply-
ing an estimation model fR(x,b) given x = x’ as the ex-
pected variability (i.e., prediction interval) of fR(x=x’,b). 
Note that, x’ is an estimated input as shown in Fig. 3 (time 
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T). This kind of uncertainty is all about the correctness of 
b (i.e., the estimated parameters of β). It is worth noting 
that we have another uncertainty source: the correctness 
of the assumed inputs fed into the EM. This kind of un-
certainty, called Assumption error [KITCHENHAM97], 
comes from wrongly assumed inputs. That is, the as-
sumption error is one that we get when we assume we 
know the project characteristics (i.e., the estimation model 
inputs), when the actual values are different. The estima-
tion model provides some error, not because of the 
model, but the inputs. For this reason, before observing 
the actual values of the project being estimated, we can 
only get a conditional uncertainty, i.e., if we observed x’ 
(i.e., the actual inputs were x’), then the error prediction 
interval would be [µDOWN; µUP] and, applying Eqns (9), 
(10), or (11), the estimation prediction interval would be 
[ 1N

DOWN,estO + ; 1N
UP,estO + ]. This kind of conditional uncertainty 

is a sort of what-if analysis. What would be the estimate 
prediction interval if the input values were x’? Therefore, 
similar to the scope error, the assumption error does not 
affect the estimation model parameters. It is about the 
uncertainty in providing the right values to the estimation 
model. 

We can now define risk exposure (Re) as a combination 
of impact (Im) and probability (Pr), i.e. Re = Im x Pr, 
[BOEHM81], where Im is the expected estimate error and 
Pr is the probability that Im happens. The impact is the 
deviation between the chosen estimate and the expected 
endpoints of the estimate prediction interval (horizontal 
rectangles no. 1, 2, 3 in Fig. 8). 
 

 
 

Fig. 8. Risk exposure brought about by the assumption error. 

As an example, assume that there are three possible 
input sets (γ’, η’, and ϕ’) where each set is a vector of val-
ues. Then we can choose each of those sets as an input set 
of the EM with different probability, e.g. x = γ’ with prob-
ability Pr(γ’) = 45%, x = η’ with probability Pr(η’) = 35%, 
and x = ϕ’ with probability Pr(ϕ’) = 20%, where γ’, η’, and 
ϕ’ are vectors of estimated input values (Fig. 8). If we are 
not able to state the probability for each individual set 
(e.g., we do not have enough a priori information), we 
have to assign an equal probability to each individual set, 
e.g., 1/3 = 0.3333  33.33%. 

If we feed the three input sets into fR(x, b), we obtain 
estimates )'(Oy 1N

,est' γ= +
γ  = fR(γ’, b), )'(Oy 1N

,est' η= +
η  = fR(η’, 

b), and  )'(Oy 1N
,est' ϕ= +

ϕ  = fR(ϕ’, b), respectively. For each 
input set, we can calculate the error prediction interval 
[µDOWN;µUP] and the effort prediction interval 
[ 1N

DOWN,estO + ; 1N
UP,estO + ] (i.e., intervals 1, 2, and 3 in Fig. 8). 

Assume now that we choose  )'(O 1N
,est γ+  as the “ultimate” 

estimate for the project because it is the most likely esti-
mated value with the probability of 45%. Based on this 
choice (i.e., x’ = γ’), what would be the expected risk (i.e., 
what would be the expected estimate error because of the 
chosen value )'(O 1N

,est γ+ )? To what extent is the error that 
we get when assuming  )'(O 1N

,est γ+  as the final estimate of 
the project? At first look, for overestimates, the expected 
risk (i.e., an impact) would seem )'(O)'(O 1N

DOWN,est
1N

est γ−γ ++  
= (A+B) and, for underestimates, )'(O)'(O 1N

estUP
1N
,est γ−γ ++  = 

(A’+B’). Actually, this calculation is incorrect because we 
did not consider the uncertainty arising from the assump-
tion error. 

As Fig. 8 shows, we should take (A+B+C) as the ex-
pected impact (Im) for overestimates and (A’+B’+C’) as 
the expected impact for underestimates, i.e. the uncer-
tainty is wider than the one considered initially. As an 
example, to calculate the risk exposure (Re), if we chose 

)'(O 1N
est γ+  as a project estimate (Fig. 8), then the risk expo-

sure for an underestimate would be, A*0.33 + B*0.27 + 
C*0.12 and, for an overestimate, would be A’*0.33 + 
B’*0.22 + C’*0.07. Based on the distribution in Fig. 8, we 
may apply different strategies for choosing the “ultimate” 
estimate of the project. For instance, if we chose the value 
corresponding to the median (Fig. 8), we may have a bet-
ter central tendency than )'(O 1N

est γ+ . Or, since an underes-
timate is usually considered more risky than an overesti-
mate [MCCONNELL06], – because the former may lead 
to losing money, while the latter may lead to not gaining 
money – another strategy for an organization trying to 
minimize the risk of losing money (i.e., of underestimate) 
may choose the endpoint “Up” as the “ultimate” estimate 
of the project (i.e., )'(O UP

1N
est ϕ+ ). 

 
3.2.8 Risk mitigation strategy 
Generally, the Re is expressed by an ordinal scale [HI-
GUERA96]. This scale can be odd (e.g., “low”, “nominal”, 
and “high”) or even (e.g., “very low”, “low”, “high”, and 
“very high”). We prefer using an even ordinal scale be-
cause knowing that an estimation model provides a 
“nominal” risk exposure is useless and even confusing. In 
other words, we prefer to avoid the risk exposure may 
concentrating on the median value causing further uncer-
tainty. 

Apart from the scope error that we cannot quantify in 
terms of the error prediction interval (even though we 
may roughly estimate it), the procedure that we propose 
for estimating risk and uncertainty when assumption er-
ror occurs is: 
1. Calculate the error prediction interval [µDOWN; µUP] for 

each input set 
2. Calculate the estimate prediction interval 

[ 1N
DOWN,estO + ; 1N

UP,estO + ] for each input set 
3. State probabilities for each input set or assign equal 
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probability (if we  do not have enough a priori infor-
mation to assign different probabilities)  

4. Build the diagram in Fig. 8 
5. State a risk minimization policy 
6. Based on the stated policy in step (5), choose the “ul-

timate” estimate of the project. 
This procedure can be applied independently from the 
methodology that we choose for calculating estimate pre-
diction intervals. Therefore, for instance, it can be used 
along with the Jørgensen’s prediction interval methodol-
ogy [JØRGENSEN03], Bootstrap methods [ANGELIS00], 
Regression methods [JØRGENSEN04A], and the one that 
we propose in this work. 
 
3.3 Measurement and improvement paradigms 
In this research, we mainly deal with building evaluation 
models (e.g., evaluation formulas, algorithms, and crite-
ria) based on the GQM approach [BASILI94A], [LIND-
VALL05] in the context of learning organizations 
[BASILI92B]. However, our proposal is general enough 
for any evaluation and measurement environment such 
as Practical Software Measurement [MCGARRY02] and 
Goal-Driven Measurement [PARK96]. 

GQM is an approach for building, tailoring, and select-
ing models and metrics for addressing specific goals for 
any software project in an organization (e.g., stating goals 
on software processes, products, and quality properties). 
Goals can be defined for any object, for a variety of rea-
sons, with respect to these quality attributes, from various 
points of view, relative to any environment. For instance, 
a typical GQM template is the study object, the purpose, the 
quality focus, the point of view, and the context. Based on 
top-down flows and starting from such a goal, we can 
generate Questions, which in turn generate Metrics. It is 
also possible to have intermediate goals (sub-goals) 
[LINDVALL05], which help better understand the meas-
urement problem and control its complexity. Based on 
questions such as “Is the performance of the object (e.g., proc-
ess, methodology, estimation model etc.) better?” we build 
evaluation models where the current performance can be 
effectively compared to the past ones. In order to do so, a 
baseline is built (e.g., based on the history and experimen-
tal data). 
 
3.4 Error Taxonomy Summary 
As we have already illustrated, parametric estimation 
models can be affected by specific errors. In this section, 
we only summarize them for better comprehension (Fig. 
9). 

When applying an estimation model, we have different 
kinds of uncertain and risk (see Section 3.4): 
(1) Model error affects the correctness of the model pa-

rameters. It can be inherent to (a) missing variables, 
(b) redundant variables, (c) unsuitable model com-
plexity, (d) heteroscedasticity, (e) spurious relation-
ships, (f) measurement error, or (g) an iterative cali-
bration procedure. The model parameters thus calcu-
lated would be biased. It expresses our uncertainty 
on the model. 

(2) Scope error does not affect the correctness of the 
model parameters. It has to be supported by auto-
matic software tools that perform a similarity analy-
sis between the project being estimated and the past 
projects used for calibrating the estimation model. It 
expresses our uncertainty on the unsuitability of us-
ing the model for predicting quantities that are out of 
the model scope. 

(3) Assumption error does not affect the correctness of the 
model parameters. It requires knowing (or being able 
to estimate) the probability that the estimation model 
inputs are correct. For this kind of error, we can de-
fine a risk exposure, i.e. Re = Im x Pr, where Im is an 
interval as shown in Fig. 8 and refers to underesti-
mates and overestimates, separately. It expresses our 
uncertainty about the model inputs. 

 

 
 

Fig. 9. Error taxonomy. 

 
3.5 Related Work on Prediction Intervals 

In the literature, there exist many ways of calculating 
an effort prediction interval. Angelis and Stamelios [AN-
GELIS00] calculate prediction intervals of regression 
model and resampling (bootstrap) analogy-based models. 
Jørgensen et al. [JØRGENSEN03] calculate the prediction 
interval through the empirical distribution as explained 
above. Moreover, Jørgensen [JØRGENSEN04A] uses a 
regression model to predict the most likely estimation 
accuracy, directly. There also exist human-based judg-
ment methods [JØRGENSEN03], where the effort predic-
tion interval is derived by error distributions coming 
from human judgment. Another approach is provided in 
[CHULANI99], where the uncertainty is evaluated by a 
Bayesian analysis related to the project schedule. Simi-
larly, to the latter, Fenton [FENTON99] and Pendharkar 
et al. [PENDHARKAR05] use Bayesian network for 
evaluating the estimation uncertainty. Further informa-
tion on the uncertainty evaluation can be found in 
[MYRTVEIT99]. 

A prediction interval (PI) consists of a minimum, a 
maximum value, and a confidence level [BAIN92]. For 
instance, we may find the upper and lower limits of an 
estimate such that 90% of observations will fall within the 
interval (lower and upper bounds). Such an interval can 
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help manage and describe uncertainty [JØRGENSEN03]. 
In Section 3.2, we have already shown the way to calcu-
late prediction intervals both using t-Student’s percentiles 
and the empirical distribution. There is another paramet-
ric approach, which does not assume that the accuracy is 
normally distributed. This approach uses the Cheby-
shev’s inequality, which works for any distribution. Che-
byshev’s inequality is based on the following equation: 
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2k

11SkXySkXPr −≥⋅+<<⋅−    (14) 

 
Where X  is the sample mean value, S is the sample stan-
dard deviation, and k is a constant ≥ 0. For instance, if k = 
2 standard deviations, then the probability that the actual 
value is within interval [ X   -2S,  X   +2S] is at least 75% 
(= 22/11− ) [JØRGENSEN03]. This kind of analysis, some-
times, cannot be performed in real cases because it pro-
vides too large bounds [BAIN92]. Such a technique may 
be improved if we could assume that the probability dis-
tribution was symmetric [JØRGENSEN03]. Another 
method for parametric and non-parametric distributions 
is based on the minimum and maximum limits of the 
sample. So, if we have N similar projects, then PI = 
[min(sample), max(sample), (n–1)/(n+1)], where the term 
“(n –1)/(n+1)” is the confidence level of PI [VARDE-
MAN92].  

 
 

3.6 Artificial Neural Networks for regression prob-
lems 
In this section we refer to feed-forward multi-layer artifi-
cial neural networks with supervised training (e.g., Back-
propagation [RUMELHART86]), optimization techniques 
(e.g., Levenberg-Marquardt [HAGAN94], regularization 
by weight decay [DREYFUS05], early stopping [DREY-
FUS05]) and feature selection [STOPPIGLIA03], [KO-
HAVI97], [AHA96], [BRIAND92], [KIRSOPP02A], 
[JOHN94] (e.g., principal component analysis 
[JOLLIFE96], [NEUMANN02], curvilinear component 
analysis [RUMELHART86], [BISHOP95A], leave-one-out 
[DREYFUS05], and cross-validation [STONE74]). Multi-
layer feed-forward artificial neural networks are also 
called (multi-layer) perceptrons. 

In this research, we consider perceptrons with only 
one hidden layer. This is not a limitation because it is pos-
sible to prove that the capability of such a network is the 
same as those with more than one hidden layer [DREY-
FUS05, pp. 13].  

For instance, let us consider the following 3-D space 
equation (15): 

 
)tanh()tanh(),( 876543210 YcXcccYcXccccYXg ++⋅+++⋅+=  

(15) 
Where, X and Y are the independent variables, {c0 … c8} 
is a set of 9 parameters of g(X, Y) and tanh is the hyper-
bolic tangent function. Compare Eqn. (15) with Eqn. (16), 
also a 3-D space equation.  
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Both are mathematical models that can be used to ap-
proximate a generic function g(X, Y) from a number of 
available observations. We can use either function to cal-
culate the regression function [BISHOP95A, pp.201-203] 
and based on the available observations, we would esti-
mate parameter values that minimize the cost function. 

Equation (15) is a multi-layer feed-forward artificial 
neural network perceptron (Fig. 10) and Eqn. (16) is a 
polynomial function. Note that, Eqn. (16) can be trans-
formed into a linear function, Exn. (17). 

 
55443322110 XcXcXcXcXcc +++++  (17) 

 
When X = X1, Y = X2, X2 = X3, X*Y=X4, and Y2 = X5. Both 

Eqn. (15) and Eqn. (16) can be used as model regression 
functions. Let us consider their similarities and differ-
ences more closely. 
 

 
 

Fig. 10. Graphical representation of Eqn. (15), a multi-layer feed-
forward artificial neural network with two input units, one hidden layer 
of sigmoid functions (tanh), and a bias unit. The output is calculated 
by multiplying the input units by the corresponding weights (parame-
ters). Note that, the bias term is equivalent to an intercept in a tradi-
tional regression model [BISHOP95A]. 

The first similarity between (15) and (16) is that they 
are the summation of several functions. In particular, Eqn. 
(15) sums 3 functions and Eqn. (16) sums 6 functions. But, 
they use different kinds of functions; the functions in Eqn. 
(15) are not linear with respect to their parameters, while 
Eqn. (16) is composed of functions that are linear with 
respect to their parameters [DREYFUS05, pp. 13]. The 
Eqn. (16) sums functions that have a fixed shape, while 
Eqn. (15) combines functions that have shapes adjustable 
through a number of parameters (e.g., c2, c3, c4). This 
characteristic, for Eqn. (15), allows us to get more degrees 
of freedom using a smaller number of functions rather 
than a smaller number of parameters. It has been proven 
that, if the model is non-linear with respect to its parame-
ters, it is more parsimonious [BARRON93, cap. 1], [DREY-
FUS95, pp. 13-14]. This means that, in order to approxi-
mate a function, if we use a model that is nonlinear with 
respect its parameters, we need a smaller number of 
measurements to get the same accuracy or we can get 
better results using the same number of measurements.  

Moreover, it can be shown that the number of required 
parameters to perform an approximation with a given 
accuracy varies exponentially with the number of vari-
ables for models that are linear with respect to their pa-
rameters, while it increases linearly for models, which are 
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nonlinear with respect to their parameters [BARRON93, 
cap. 1], [DREYFUS05, pp. 13-14]. These two properties of 
parsimony explain why nonlinear-to-their-parameter 
models should be preferred to linear-to-their-parameter 
models, if we need to get better accuracy. Instances of 
linear-to-their-parameter models are all kinds of Polyno-
mial Functions, Radial Basis Function with fixed centers 
and widths, and Wavelet Networks, while nonlinear-to-
the-parameter models are multi-layer feed-forward per-
ceptrons and radial basis functions with no fixed centers 
and widths [DREYFUS05]. 

Parsimony apart, the main difference is that a regres-
sion function calculated by neural networks is actually a 
regression function conditioned to the observed sample. 
Operatively, this means that we can perform accurate 
predictions within intervals where observations are avail-
able. If observations are not available, generalization ca-
pabilities decrease. Conversely, artificial neural networks 
do not need to make assumptions on model linearity (or 
log-linearity) and deterministic input variables as ex-
plained in Sections 3.1 and 3.2. As a result, neural net-
works provide better results than linear methods where 
sampled data is available (cited parsimony). Therefore, 
neural networks are particularly useful in dealing with 
problems when we do not know a priori the relationship 
between Inputs and the Output.  

Another difference is the way they calculate parame-
ters. For models that are linear with respect their parame-
ters (e.g., polynomial functions), the ordinary least 
squares methods can be used, even though the resulting 
models are not parsimonious [DREYFUS05, p. 30]. For 
models that are nonlinear with respect their parameters 
(e.g., multi-layer artificial neural networks) there is no 
closed solution and an iterative method has to be applied 
(Section 3.1). The most used technique is Backpropagation 
[RUMELHART86]. It is an iterative method based on cal-
culating gradients. The gradient of the cost function is 
calculated for each step and is used to update the parame-
ters found in the previous step. The algorithm stops when 
satisfactory conditions have been met [BISHOP95A]. 

Consider Eqn. (16). If we need to increase the fit to the 
observations, we normally increase the number of poly-
nomial terms (its degree). The corresponding increase for 
Eqn. (15) is to add hidden units (e.g., 3, 4, or more). In 
both cases, we are increasing the complexity of the model, 
but in non-linear-in-the-parameter models, we keep con-
stant the number of adding functions (parsimony). 

For further explanations about Backpropagation and 
optimization, see the books and papers of Bishop 
[BISHOP95A], Dreyfus et al. [DREYFUS05], and Guyon et 
al. [GUYON05]. The latter also describes coding issues 
with common programming languages. The literature 
reports on many applications of neural networks used for 
predicting software cost [KHOSHGOFTAAR97], [SRINI-
VASAN95], [WITTIG94], [FINNIE97], [SAMSON97], 
[MAIR00], [MYRTVEIT04], [JØRGENSEN95]. 
 
3.7 Bayesian classification through neural networks 
Neural networks can use the Bayesian theorem for classi-
fication problems.  

 

 
 
Fig. 11. Neural network for discrimination problems. The network has 
just one input variable (feature) along with a bias variable. 

This problem is slightly different from the regression 
problem. A Neural network for discrimination problems 
looks like the one shown in Fig. 11. In particular, the net-
work has just one input variable and one bias unit. The 
output is a real number in [0;1]. We can use the logistic 
function to get such a [0;1] interval [RUMELHART86]. 
The number of hidden units represents the complexity of 
the network (Section 3.6). Consider the following analogy. 
Based upon prior experimental evidence, we hypothesize 
that healthy people (e.g., those with lower disease inci-
dence) keep the ratio between their weight and height 
within a specific threshold (unknown). The classification 
problem is to figure out whether people never treated 
before belong to the healthy people’s class or not (e.g. 
they will develop some diseases or risk developing some 
diseases). Let the X-axis in Fig. 12 represent the ratio be-
tween weight and height, i.e., Xi = Weighti/Heighti 
(where Xi represents i-th person). Class A is represented 
by 1 and class B by 0, i.e. Pr(y=1|X) = Pr(A|X) = 1 – 
Pr(y=0|X), where y is the classification function in Fig. 12. 
Triangles in Fig. 12 are some observations of X for non-
healthy people, and circles are some observations of X for 
non-healthy people. 

The problem is then classifying whether new observa-
tions belong to class A or class B. Star and cross points 
represent two new observations in Fig. 12. In order to 
deal with this classification problem, we use the neural 
network in Fig. 11, where the input variable takes values 
from the X-axis and the output represents the decision 
made (e.g., i-th person belongs to class A). For instance, if 
the output is within [0.5;1], we classify the person as be-
longing to class A. If the output is within [0;0.5[, we clas-
sify the person as not belonging to class A (i.e. belongs to 
class B). 
 

 
 
Fig. 12. A Discrimination problem. The  X-axis represents the ratio of 
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a person’s weight and height. The output refers to the network in Fig. 
11. 

Note that, this problem is a two-class discrimination 
problem since if i-th person does not belong to class A, we 
can infer that he/she belongs to class B. We ask our neu-
ral network to separate class A from class B and provide a 
reasonable classification (similarity analysis). Note that, 
the neural network classifies new items based on previ-
ous observations. This problem is simple as it deals with 
only one input variable and does not require the use of an 
artificial neural network. The classification problem is 
about performing a similarity analysis between the peo-
ple’s characteristics never observed before and the ones 
that we observed for building the network. This analysis 
has to take into account the sampling data as well. 

The classification paradigm that we use is the Bayesian 
approach since it is able to combine both aspects (a priori 
belief and sampling data information). The Bayesian ap-
proach is quite different from the classical one (frequen-
tist). The former considers both “a priori” belief (what we 
believe about the object, healthy/non-healthy) and the 
sampling data information, while the latter is exclusively 
based on the sampling data information. 

Going back to the proposed example, if there are sec-
ondary factors that affect the classification decision, such 
as gender, age, diet, and whether they are a smoker, the 
problem becomes more complex because five features 
(input variables) affect the result simultaneously. Mathe-
matically, the classification problem shown above is 
equivalent to considering a random variable Γ, which is a 
function of a vector of features X (input variables). Such a 
random variable is equal to 1 when the input (called pat-
tern) belongs to A and 0 when the input belongs to B 
[DREYFUS05]. The literature reports many applications of 
neural networks used for discrimination problems and 
risk assessment in software engineering such as the one 
that we have reported above [KHOSHGOFTAAR95], 
[LANUBILE97], [BINGUS96], [KARUNANITHI92], 
[KHOSHGOFTAAR94]. 

The most meaningful question is then “what does this 
index (network’s output) represent?” We show the proof 
of the following result [DREYFUS05], [BISHOP95A]: the 
regression function of the random variable Γ is the poste-
rior probability of class A. 

The regression function y (x) of variable Γ is the ex-
pected value of Γ given x, therefore y(x) = E(Γ| x). More-
over, 
 

E(Γ| x) = Pr(Γ =1| x) × 1 + Pr(Γ = 0) × 0 = Pr(Γ =1| x) 
(18) 

which proves the result [DREYFUS05]. In Section 3.6 we 
showed that, based on Backpropagation algorithm, neural 
networks could estimate non-linear regression functions 
from observed samples. Then, if we apply such an algo-
rithm to our network for classification, we can estimate 
the regression function of Γ and consequently get poste-
rior probabilities. This is a very important result because 
the interpretation of the mathematical result is that, we 
can use neural networks to estimate the probability that, 

given a new input, it belongs to class A (probability of A 
given x). 

When applying linear and non-linear models to classi-
fication problems (e.g. logistic regression), we may be 
interested in evaluating prediction intervals as well. For-
mulas to evaluate prediction intervals can be derived 
from the same asymptotic theory shown in Section 3.2 
[HUSMEIER04], [HWANG97]. 

However, it is important noting that, in classification 
problems where there is a binary decision to make (0 or 
1), instead of minimizing a sum-of-squares function, we 
can consider a cross-entropy error function, which is 
more appropriate for classification. It happens because 
the cross-entropy error function is based on a Binomial 
error distribution, which is more suitable for classification 
than a Gaussian distribution on which a sum-of-squares 
error function is based [BISHOP95A]. 

 
3.8 Bayes’ Theorem 
The posterior probability is the one that Bayes’ theorem 
defines. In particular, Eqn. (19) is the formula of such a 
theorem. 
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where Pr(A|x) is the posterior probability that an ob-
served x belongs to A, i.e., given a particular project, the 
probability that it belongs to A; Pr(A) represents the prior 
probability of class A, i.e. the percent of prior observa-
tions that belong to A; pX(x|A) represents the prior prob-
ability that any x belongs to A knowing A, i.e., the likeli-
hood that when we observe any project (x), it belongs to 
A. Similar definitions hold for B. Note that Pr(B|x) = 1 – 
Pr(A|x)  hence we can directly get the complementary 
probability. Calculating Pr(A|x) or Pr(B|x) depends on 
the problem that we are dealing with. Our focus is on 
“unwanted events” (risk and uncertainty) since we calcu-
late Pr(A|x), where, concerning the example considered 
above, A represents the non-healthy people’s class.  

Based on the Bayesian theorem and Eqn. (18), the dot-
ted sigmoidal line in Fig. 12 is actually a posterior prob-
ability density that any point expressed by X belongs to 
class A (y=1). 

Theoretically, Bayes’ theorem is a very important re-
sult, but it is difficult to apply in real cases [AITKEN95, 
pp 36-41]. The problem is that, we could, somehow, esti-
mate P(A) and P(B) (e.g., based on prior information), but 
we could not estimate pX(x|A) and pX(x|B), we need to 
know such conditional probabilities for applying the 
Bayesian theorem. 

Based on Eqn. (18) and (19), these considerations ex-
plain the reason why neural networks are so important 
for Bayesian classification. Neural networks (or any bi-
nomial model such as a logistic regression model) are able 
to estimate empirically the posterior probability even if 
we do not know conditional probabilities pX(x|A) and 
pX(x|B). So, mathematically, we can use a neural network 
to estimate the conditional probability density; that is, 
given the features of a new item, we can know it belongs 
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to class A without knowing the inverse conditional prob-
abilities pX(x|A) and pX(x|B). Therefore, we can use 
multi-layer feed-forward neural networks for estimating 
posterior probability density functions and using them 
for discrimination. 

Let us go back to the classification example above and 
consider the following questions: “what is the probability 
that i-th person is non-healthy, given features Xi? In other 
words, what is the risk that i-th person is non-healthy 
knowing his/her features? If we consider “non-healthy” 
as an event, what is the probability of the (unwanted) 
event “non-healthy” given i-th person’s features? 

Based on the posterior probability density function in 
Fig. 12, we can deal with the inverse problem. The ques-
tion to answer would be what is the X range that corre-
sponds to a 95% of posterior probability? In other words, 
we aim at using neural networks for empirically (i.e. 
based on observations) building posterior probability 
density functions and exploiting them to infer informa-
tion about the population. Mathematically we have 
 

PrΘ|X = x(L<Θ<U) = 1 – α    . (20) 
 
Where PrΘ|X = x expresses the probability of Θ conditioned 
to the observed values of X = x, L is the lower bound, and 
U is the upper bound of the credible interval, where a 
credible interval is the homologous of the confidence in-
terval for the Bayesian approach. Θ is the unknown pa-
rameter of the population, 1 – α is the confidence that the 
real value of the parameter Θ will fall between L and U. 
From a practical point of view, to get a 95% (credible) 
interval empirically (Fig. 12), we can fix a posterior prob-
ability of 0.05 and 0.95 on the vertical axis (ANN output) 
and select the corresponding values (i.e. L and U) on the 
X-axis. 

As we have explained in Section 3.1, the Bayesian ap-
proach considers the uncertainty caused by the model 
parameter calculations. MacKey [MACKEY91] estimated 
the uncertainty by integrating it over many models built 
by simulation techniques. The problem with the 
MacKey’s approach is the difficulty of calculating the in-
tegral of each piece of uncertainty. Because of the ap-
proximation in evaluating it and the normality assump-
tions on the models, we believe that the MacKey’s ap-
proach is not appropriate for software engineering practi-
tioners. Later in the paper, we will present an empirical 
procedure without making any specific assumptions. We 
will simplify the calculation of the endpoints L and U by 
applying an empirical approach like Jørgensen’s empiri-
cal approach for calculating prediction intervals [JØR-
GENSEN03] and avoiding as many assumptions as possi-
ble. 

4 THE PROBLEM 
The aim of this paper is to define a way to improve para-
metric estimation models with respect to their prediction 
and uncertainty (inference). The main problem of concern 
in this work is that, if we continue to violate assumptions 
on which the model is based, pretending that everything 

is fine, we will have neither accurate estimates nor suit-
able model improvements. Therefore, we argue that to 
improve our modeling capability we have to recognize 
violations and deal with their consequences (e.g. making 
corrections to the bias and spread of the model). First, we 
have to evaluate the uncertainty. Once we know the ex-
pected error (spread), we can decide what we should do 
to improve our modeling capability. 

We have seen that for improving the prediction capa-
bility of linear models, we can use non-linear models be-
cause of their parsimony and indefinite flexibility over 
linear models [DREYFUS05, Chapter 1]. Further, we have 
seen that, for improving inference (e.g., estimating PIs) of 
both linear and non-linear models, when regression as-
sumptions are violated, there are a number of actions we 
can take (Section 3.1, Table 1). Since we aim at improving 
estimation and inference at the same time, we focus on 
non-linear models (i.e., multi-layer feed-forward neural 
networks). 
 

 
 
Fig. 13. Errors are x correlated, with increasing variance, biased, and 
with outliers. The solid line is the expected relative error (x-
dependent median) and the region bounded by dashed lines is the 
associated 95% error prediction interval. 

Therefore, the mathematical problem we deal with is 
to estimate PIs of linear (polynomials) and non-linear 
(MLFFNN) models when regression assumptions are vio-
lated (Section 3.1). Although we illustrate the problem in 
two-dimensional space, the considerations made below 
can be applied, without loss of generality, to an N-
dimensional space, where the error variance depends on 
the independent variables of the model, i.e. x = x1, …, xQ. 

Even though we can apply improvements to a linear 
and non-linear estimation model when regression as-
sumptions are violated, as shown in Table 1, we may 
have a situation like the one in Fig. 13. We use a relative 
(i.e. weighted) measure of the error (Section 3.2), i.e. RE = 
e/Actual = (Actual − Estimated)/ Actual, instead of the 
residuals (i.e., e) to avoid the error increasing as x values 
grow. RE is well known and applied in software cost es-
timation though other error measures can be used (e.g. 
BRE) as explained in Section 3.2. The error in calculating 
PIs by formulas based on t-Student’s or z percentiles is 
that, in software engineering we can almost never assume 
that the error distribution is a Gaussian with fixed pa-
rameters (0, σ2I). Consequently, we may have type I or II 
errors. 

As an example, assuming the situation in Fig. 13, 
where for x = 0.8 KSLOC the variance of the RE is ex-
pected to be greater than the average variance of the 
sample (σ2). Therefore, if we estimated the spread by the 
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average variance we would underestimate the real uncer-
tainty. In Fig. 13, when x = 0.8, the expected bias is not 
zero. It should be calculated by the non-linear regression 
function in Fig. 13 (solid line). 

Therefore, the improvement problem that we deal with 
is the evaluation of the uncertainty of the estimation 
model assuming violations have occurred, and identify-
ing suitable improvements to the modeling capability. 

5 LITERATURE REVIEW 
There has been work in estimating uncertainty, compar-
ing estimation models, using measurement to improve  
and artificial neural networks related to our work and we 
discuss them here. 
 
5.1. Uncertainty 
Estimation uncertainty has received little attention in the 
literature [SHEPPERD07A]. It has been dealt with in two 
different ways: focusing on risk as an unwanted event 
and on variability when calculating the estimate. Pend-
harkar criticizes traditional effort estimation techniques 
“for not providing appropriate causal relationships for 
predicting software development effort” [PEND-
HARKAR05], Fenton argues that traditional models do 
not “provide support for risk assessment and reduction, 
inability to combine empirical evidence and expert judg-
ment, inability to handle incomplete information” [FEN-
TON00]. Fenton proposes a Bayesian network approach 
in order to encapsulate casual influences on the depend-
ent variable (e.g., what we are estimating) [FENTON99], 
[FENTON00]. There exist some studies applying this type 
of approach, e.g. Moses et al. [MOSES00] propose a 
Bayesian network for improving estimations in small 
software companies. Chulani and Boehm [CHULANI99] 
use the Bayesian theorem to combine prior expert judg-
ment and historical data. Pendharkar et al. [PEND-
HARKAR05] perform a comparison among non-
parametric methodologies such as Bayesian networks, 
neural networks, and regression tree models. 

On the other hand, there exist approaches dealing with 
the problem in a slightly different way. For instance, Jør-
gensen [JØRGENSEN03], [JØRGENSEN04A], [JØRGEN-
SEN04B] manages uncertainty considering Prediction 
Intervals (see Section 3.5). He describes models whose 
purpose is to explain the accuracy and bias variation of 
estimates (human-centric) through a regression analysis. 
Kitchenham and Linkman [KITCHEHNAM97] adopt an 
organizational perspective based on the portfolio concept.  

Känsälä [KÄNSÄLÄ97] defines a tool for risk man-
agement and applies it to software cost estimation. Re-
cently, Ohsugi et al. [OHSUGI07] have tested empirically 
the hypothesis that “using more analogues produces a 
more reliable cost estimate”. This analogy-based ap-
proach provides meaning to support decision making in 
project management because knowing the estimation reli-
ability (uncertainty or risk) increase the confidence in 
make decision about project scheduling and budgeting. 

To deal with uncertainty, our approach tries to take 
advantage of both of these methodologies (Bayesian 

analysis and Prediction Intervals). 
 

5.2. Comparison of estimation models 
The state of the art, in this specific field, is mainly oc-

cupied by software cost evaluation models. The research 
activity is huge. Shepperd [SHEPPERD07A] and Jørgen-
sen and Shepperd [JØRGENSEN07] analyzed such a pro-
duction by systematic review [KITCHENHAM04] from 
320 journal and 333 conference articles since 1990. Other 
researches are by Stensrud et al. [STENSRUD02], Foss et 
al. [FOSS03], and Myrtveit et al. [Myrtveit05]. The focus, 
here, is on model comparison in order to find which is 
best. They substantially agree on the statement that 
MMRE is not always a good indicator for model compari-
son. Realistic improvements, in this field, should be based 
on such statement. 

Actually, we could choose universally recognized 
measures for model comparison (e.g., Mean Square Error, 
Root Mean Square Error, and χ2 test [BUSEMEYER00]). 
We also could adopt the Kitchenham et al.’s proposal 
[KITCHENHAM01] that considers the distribution z = 
estimate/actual. In such a research, authors argue that 
MMRE and PRED(N) are, respectively, measures of the 
spread and the kurtosis of z, therefore they cannot be 
used for model comparison. They suggest using boxplots 
of the z values or the residuals, which give better assess-
ment of prediction quality than summary statistics. Al-
though slightly related to accuracy indicators, further 
work can be found in Briand et al.’s work [BRIAND99], 
[BRIAND00]. They apply MMRE, MdMRE (the Median 
Magnitude of Relative Error) and PRED(25) with cross-
validation [STONE74] to many different estimation tech-
niques (e.g., ordinary least squares regression, stepwise 
ANOVA, CART, and analogies [MYRTVEIT05]). They 
find that, the performances of the modeling techniques 
are not significantly different (with the exception of the 
analogy-based models, which seem to be less accurate) 
[BRIAND99]. 

 
5.3 Measurement approaches 
Basically, there exist few approaches for measurement 
that software organizations really use [Wohlin00]. They 
are Goal-Question-Metric (GQM) [BASILI84], 
[BASILI94A], [BASILI95], [CANTONE00], [GENERO05], 
[LINDVALL05], [SOLINGEN99] Goal-Driven Measure-
ment [PARK96], and Practical Software Measurement 
[MCGARRY02]. Indeed, the latter partially deals with 
improvement issues, while the second one builds on the 
same rationale of the former, but adopts a different proc-
ess to figure out what measuring. For these reasons, we 
are mainly focusing on GQM approach, Quality Im-
provement Paradigm (QIP), and Experience Factory (EF) 
[BASILI92B]. Another more general approach that is 
worth to quote is the Balanced Scorecard Method [KAP-
LAN92], [KAPLAN96A], and [KAPLAN96B]. This tech-
nique relies on some key concepts of previous manage-
ment ideas such as Total Quality Management [FEI-
GENBAUM56], including customer-defined quality, con-
tinuous improvement, employee empowerment, and 
measurement-based management and feedback. Based on 
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metrics and indicators, balanced scorecard analyzes per-
formances of the organization for improvement over 
time. This is not specific for software organizations, but it 
may be also used in that context [BROCK03]. 

 
5.4 Artificial neural networks  
In addressing the third topic, it is important to note that 
Artificial Neural Network (ANN) research is mainly 
based on findings concerning mathematical modeling 
techniques. The research activity is huge in this field, as 
well. Interested readers can find main valuable contribu-
tions in [BISHOP95A] (e.g., pattern recognition), in 
[DREYFUS05] (e.g., non-linear multi-regression analysis), 
and in [GUYON05] (e.g., implementation techniques).  

Machine Learning (ML) techniques such as cited artifi-
cial neural networks, rule induction, genetic algorithms 
and case-based reasoning have been applied in a wide 
variety of research fields such as image processing, pat-
tern recognition and classification, econometrics, and bi-
ology. In this paper, we deal with ANN applied to Soft-
ware Engineering problems. ANN has substantially been 
used in two different ways in this field. For pattern classi-
fication (e.g., testing, fault proneness, software risk as-
sessment) [KHOSHGOFTAAR95], [LANUBILE97], [BIN-
GUS96], [KARUNANITHI92], and [SARCIA07], where 
the output is a real number falling within interval [0; 1]. 
For non-linear regression (e.g., software cost estimation) 
[KHOSHGOFTAAR97], [SRINIVASAN95], [SHP11], 
[WITTIG94], [SAMSON97], and [SRINIVASAN95], fault 
prediction [KHOSHGOFTAAR94] where the output can 
be any real number. Some comparative researches [JØR-
GENSEN95], [BRIAND99], [BRIAND99], and [SHEP-
PERD97B] show opposite results with respect to perform-
ances. Sometimes, researchers, mainly coming from statis-
tical environment, found out worse results [MYRT-
VEIT04], [KITCHENHAM01] than ordinary techniques 
(e.g., log-linear regression [GULEZIAN91], [JEFFERY90], 
[MEZIES05]).  

Current ANN research focuses on improving model 
assessment and feature selection techniques, [AHA96], 
[BRIAND92], [KIRSOPP02A], [JOHN94], which are sup-
posed to provide improvements to ML performances 
(e.g., v-fold cross-validation [STONE74], feature subset 
selection [KOHAVI97], [CHEN05], principal [JOLLIFE86], 
[NEUMANN02] and curvilinear component analysis 
[RUMELHART86], [BISHOP95A], leave-one-out [DREY-
FUS05], virtual leave-one-out [STOPPOGLIA03]).  

6 THE SOLUTION 
Before defining the complete framework for improving 
models in the software engineering field, we present the 
mathematical solution to the problem presented in Sec-
tion 4. 
 
6.1 The mathematical solution 
The approach that we propose is an alternative to the 
non-parametric bootstrap method [EFRON93] and the 
Bayesian approach [MACKEY91]. It is an extension of the 
Jørgensen’s approach for calculating empirical PIs for 

both regression-based models [JØRGENSEN04A] and 
human judgment [JØRGENSEN03]. Although the pro-
posed methodology may be bootstrapped or included in a 
Markov Chain Monte Carlo simulation framework, we 
consider neither resampling procedures nor simulation 
approaches because their computational cost does not 
agree with our goal of proposing a practical approach 
that can be used in real situations with an affordable cost.  

The proposed strategy of estimating PIs is based on 
removing as many regression assumptions as possible 
and considering the error sample in Fig. 13 (i.e. relative 
error, RE). Since we do not assume that the distribution is 
a Gaussian and the sample is homoscedastic, we consider 
the distribution asymmetric, affected by outliers, and 
with variable spread. Moreover, we assume RE to be x-
correlated. 

The solution is composed of six steps. (1) We calculate 
the non-linear robust regression function of y (= RE) with 
respect to x (= KSLOC), i.e. solid line in Fig. 13. Such a 
kind of regression function provides an x-dependent me-
dian, minimizing the Minkowski R-distance (R = 1). It is 
called robust regression because it is less sensitive to out-
liers and asymmetric distributions. 

(2) To deal with the heteroscedasticity issue, we esti-
mate the x-dependent variance empirically. The strategy 
is based on turning the problem into a two-class discrimi-
nation problem. In particular, we use the x-dependent 
median calculated above for splitting the sample into two 
classes (Fig. 13); class A (upper) and class B (lower). We 
use observed elements of classes A and B as representa-
tives of the unobserved data points of each class. 

(3) Then, we train a Multi-layer Feed-Forward Neural 
Network for Discrimination (MLFFNND) so that its out-
put provides a classification decision, i.e. a new data 
point is classified as belonging to A or B according to its 
similarity to the data used for training. Therefore, our “a 
priori” information (i.e. “our belief” as explained in Sec-
tion 3.7) tells us how far a point is above or below the x-
dependent median (binomial choice). Note that, in the 
example of Section 3.7, we assumed that our “a priori” 
information concerned people‘s healthiness, while here 
our belief is whether an unobserved point is above or be-
low the x-dependent median. 

 

 
 

Fig. 14. Posterior probability density obtained by fixing KSLOC and 
letting RE vary. Dotted and dashed lines represent posterior prob-
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ability functions with an increasing variance. 

We call this MLFFNND a Bayesian Discrimination 
Function (BDF) because its output can be interpreted as 
the posterior probability that any input belongs to class A 
[BISHOP95A], [DREYFUS05] (Section 3.7). As shown ear-
lier, any input is classified as belonging to class A, if the 
BDF output is between [0.5, 1], e.g. 0.85. It is classified as 
belonging to class B otherwise, i.e. the BDF output is in 
[0,0.5[, e.g. 0.25, where [.,.] is a closed interval and [.,.[ is a 
right-open interval. 

Actually, we are not interested in classifying our new 
observations as shown in Section 3.7. Our aim is to use 
the BDF for inference (the inverse problem). Making in-
ference by the BDF in Fig. 14 means selecting the interval 
(MeDOWN, MeUP) on the x-axis corresponding to the two 
fixed confidence limits (e.g. [0.025, 0.975]). Note that, the 
BDF performs a similarity analysis between the character-
istics of the project being estimated and the observed pro-
jects upon which we built the BDF. Therefore, we use the 
BDF capabilities to deal with the scope error presented in 
Section 3.2. 

The defined BDF in Fig. 14 is expressed by the follow-
ing relationship, fBDF(x1 = RE, x2=KSLOC) = [0,1], i.e. y = 
fBDF(x1, x2) = Pr(y=1|x1, x2), where [0, 1] points out any 
real number in [0,1] (e.g. the posterior probability), x1 and 
x2 represent the sample information, and y=1 represents 
class A (y=0 represents class B). Assume that, the BDF 
yields fBDF(P1) = 0.85 and fBDF(P2) = 0.25. Then, project P1 is 
classified as belonging to class A, because fBDF(P1) ≥ 0.5 
and project P2 is classified as belonging to class B because 
fBDF(P2) < 0.5. 

Assume now that instead of fixing both values x1 = RE 
and x2=KSLOC, we fix only x2 (= constant c), and let x1 
vary. Then, BDF turns into )x(y)x(f)x|1y(Pr 11cx|2x 21

=== = . 
Note that, in case of an N-dimensional space (with N > 1), 
we fix all variables except x1 (the relative error RE), i.e. 

)x(y)x(f)x..x|1y(Pr 11cx,...,cx|N2x 1NN121
===

−==  where the vari-
ables (x2 … xN) are the same as the independent variables 
of the estimation model. 

(4) Once we build the posterior probability density 
(solid line in Fig. 14), we can obtain a Bayesian PI by fix-
ing a 95% confidence level, i.e. (0.025, 0.975), and picking 
the corresponding values of RE on the x-axis, i.e. (Me-
DOWN, MeUP). This interval represents the expected range 
where the next RE will fall. The posterior probability den-
sity in Fig. 14 has an important characteristic. Its slope 
gets steeper as the variance decreases; it gets flatter as the 
variance increases [HUSMEIER04]. Therefore, the increas-
ing variance in Fig. 13 has a geometric representation in 
the model of Fig. 14. The increasing variance in Fig. 13 
corresponds to a flatter slope of the sigmoid curves in Fig. 
14, e.g. variance corresponding to the dotted line is lower 
than the variance corresponding to the dashed line. 
Therefore, the proposed strategy based on the BDF is able 
to evaluate the variance (calculating the RE range) from 
the slope of the posterior probability density function 
empirically. This approach is quite different from estimat-
ing the variance by resampling procedures such as the 

bootstrap. See [HUSMEIER04, pp 20-24] for additional 
explanations. 

(5) To calculate the estimation PI (e.g. the effort) for the 
RE range, i.e. (MeDOWN, MeUP), we first consider the for-
mula RE = (Actual − Estimated)/Actual and then, we de-
duce Actual = Estimated/(1 − RE). In Section 3.2 we used 
different symbols to indicate prediction intervals (i.e. 
[µDOWN, µUP]). That is because, previously we used the 
mean (µ), while we use the median (Me) now. 

As shown by Jørgensen et al. [JØRGENSEN03], the PI 
is )]Me1/(O),Me1/(O[ UP

1N
estDOWN

1N
est −− ++ , where 

)b,'x(fO R
1N

est =+ , e.g. fR(x’ = 0.7,b), see Section 3.2. For 
instance, assuming that the RE interval obtained from Fig. 
14 is [-0.9, 0.1] and Estimated effort = 3 person months, 
the PI is [3/(1-(-0.9)), 3/(1-0.1)] =[1.6, 3.4] person months. 

Although the proposed prediction interval shown in 
Fig. 14, i.e. (MeDOWN, MeUP), has been derived empirically 
without making any specific assumptions, it actually 
represents an underestimate of the actual uncertainty. 
That is because the BDF was derived from the principle of 
maximum likelihood estimate (MLE) that considers only 
the most probable parameter set. We should consider the 
uncertainty over the unknown parameters of the BDF, as 
well. To correct this underestimation, MacKey proposes 
to apply the Bayesian framework to classification prob-
lems. As we have already explained above, in our view 
his approach is too computationally cumbersome and 
based on too many approximations and assumptions (e.g. 
normality). Another approach to correct the underestima-
tion can be to apply Markov Chain Monte Carlo (MCMC) 
simulation, which avoids the Gaussian approximations 
[GILKS96], but is also computationally expensive and its 
reliability depends on the simulation assumptions. 

(6) To avoid the problem of a too high computational 
cost without any promise of getting better results, we pre-
fer estimating this additional uncertainty through the  
generalization error provided by cross-validation (leave-
one-out or K-fold). This procedure is more convenient 
because the cross-validation procedure has to be per-
formed anyway when selecting the classification model 
and it has a comparable computational cost with respect 
to the bootstrap or MCMC procedures. Therefore, the 
proposed procedure would be more convenient from a 
practical point of view avoiding any specific assumptions.  

 

 
 

Fig. 15. Posterior probability density (solid line) obtained by fixing 
KSLOC and letting RE vary with supplementary uncertainty due to 
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the error in calculating the model parameters. 

Since the (standardized) leave-one-out cross-validation 
score (CVS) is calculated by the SQRT(MSE), which is an 
unbiased estimator of the generalization error of the BDF 
[VAPNIK95], we use this quantity as a correction factor. 
Instead of using LOOCV, we may apply K-fold CV, as 
well. However, its score would not be an unbiased esti-
mator of the generalization error even though it would be 
more realistic than the score obtained by leaving out only 
one data point [DREYFUS05]. We sum and subtract CVS 
to the posterior probability density function (solid line in 
Fig. 14), obtaining the further two dashed lines in Fig. 15. 
In particular, the upper dashed line is 

)MSE(SQRT)x(f 1cx| 2
+=  and the lower dashed line is 

)MSE(SQRT)x(f 1cx| 2
−= . The band included within the two 

dashed lines represents the overall (standardized) uncer-
tainty due to the variation in the BDF parameters. The 
upper and lower shifts determine an increase to the mag-
nitude of the prediction interval (MeDOWN, MeUP) due to 
the supplementary uncertainty. 

The final prediction interval can be derived by fixing 
the 95% confidence as above, i.e. (0.025, 0.975), and select-
ing the corresponding values of RE on the x-axis. In par-
ticular, MeDOWN is calculated by the crossing point be-
tween the 0.025-horizontal line and the upper dashed 
line. The MeUP is calculated by the crossing point between 
the 0.975-horizontal line and the lower dashed line.  

The procedure presented here can be applied at times 
T and T+2 (See Fig. 3). If we apply the PI calculation at 
time T, when only estimated values are available, we can 
address model error, scope error, and assumption error. If 
we apply the proposed PI calculation approach at time 
T+2 when actual values are also available, we can work 
on improving the estimation model. 
 
6.2 Benefits of applying the mathematical solution  

The approach proposed in this work can be used to 
evaluate and improve the performance of any estimation 
methodology/model, e.g., regression functions, machines 
learning, human-based judgement, COCOMO, SLIM, 
bayesian networks, and function point analysis. Here we 
focus on methodologies based on parametric estimation 
models (e.g. regression functions and machine learning) 
because they not only provide a rational and repeatable 
improvement process but also provide the opportunity of 
showing how we can improve the models in terms of 
missing variables, model complexity, and scope exten-
sion.  

There are some important implications coming from 
the solution presented in Section 6.1. Generally, when 
using an estimation model for prediction and inference, 
we can apply improvement techniques as reported in 
Table 1 and evaluate the model in terms of its relative 
error. Because of the unmanaged violations of parametric 
models, model evaluation is not reliable, limiting our abil-
ity to improve the estimation model and making para-
metric models unattractive for prediction in reality.  

The approach presented in Section 6.1 overcomes these 
issues. It not only extends our ability to make improve-

ments, as described in Table 1, by dealing with the conse-
quences of violations, it also manages the improvement 
process by building experience packages, i.e. the Bayesian 
Discrimination Function (BDF). This package makes it 
faster and easier to control, reuse, retrieve, and dissemi-
nate organizational experience than using simple dia-
grams and statistics as is usually done. This way of pack-
aging, deploying and exploiting experiences within a 
learning organization enhances the decision making proc-
ess in terms of competitiveness, business goal achieve-
ment, and organization-wide common procedures (e.g., 
project control, easy-to-use tools, standardized proce-
dures over a number of projects, tracing improvements, 
and making predictions on the estimation model uncer-
tainty). 

Besides the benefits discussed in Section 6.1, the nov-
elty of this approach is that we can automate the evalua-
tion and prediction tool (i.e. the BDF) based on neural 
networks to improve estimation models. In particular, the 
BDF can execute the similarity analysis to solve the prob-
lem posed in Table 3 (Section 3.2). We encapsulate the 
estimation model capability in terms of relative error in 
the BDF so that the BDF becomes a sort of an intelligent 
agent supporting the estimation model improvement 
process, what we called Automated Experience Package 
(AEP), in Fig. 2. It provides the expected relative error of 
the estimation model according to the characteristics of 
the project being estimated. For instance, sending queries 
to the BDF, we can answer questions such as what would 
be the uncertainty (and so the risk) in estimating project P 
when using the estimation model? Which is the estimate 
that minimizes the risk of getting an estimation failure? 
How can we improve the estimation model (what is miss-
ing)? What is required for improving the estimation 
model? What is the organization’s experience with re-
spect to project P? Can the organization’s experience help 
us deal with projects that differ partially from the projects 
estimated so far? In this section, we show how to build 
and use the BDF for prediction and improvement. 

We summarize benefits of the proposed methodology 
over previous approaches. (1) We embody the estimation 
model error into a discrimination neural network, which 
can provide error prediction intervals according to a simi-
larity analysis without making any specific assumptions. 
(2) The BDF can be used as an automatic evaluation and 
prediction tool. Therefore, the BDF is faster and easier to 
apply than traditional methods that provide the predic-
tion interval but do not provide the way of improving the 
model. (3) The proposed strategy allows us to offload the 
complexity of developing the prediction models to ex-
perts (e.g. the experience factory). Note that, the BDF can 
be also used as a support tool for experts in making pro-
ject predictions and inference (e.g. in case of expert-based 
predictions [JØRGENSEN03]). (4) The BDF capability of 
predicting the estimation model error is fully known at 
time T (Fig. 3). Therefore, the BDF can be used for inves-
tigating whether the organization’s experience (i.e., its 
prediction capability) in estimating specific kinds of pro-
jects (or variables) is sufficient, e.g. before bidding on a 
contract, we may analyze the strength and weakness of 
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the organization in predicting the proposed software sys-
tem cost and then decide whether to bid or not. (5) The 
BDF allows simplification of the implementation of Im-
provement-Oriented Software Environments such as 
TAME systems [BASILI88] by adopting standardized 
packages of experience. (6) The proposed approach uses 
parametric models to overcome the limitations posed by 
regression violations. As we explained in Section 3.2 
through Fig. 7 and Fig. 8, the proposed approach turns 
the usual parametric estimation process into an analysis 
aiming at choosing an estimate that minimizes the risk of 
an estimation failure (e.g. underestimate).  

In Section 6.1, we built the Bayesian Discrimination 
Function (BDF) by considering a hypothetical data set of 
projects, where each project was described by two sets of 
variables (and related data). The first set of variables was 
composed of the same set as the estimation model (i.e. 
variables X). The second set was composed of the relative 
error. RE values were obtained by feeding the X-values 
into the estimation model and calculating the RE = (Ac-
tual – Estimated)/Actual for each data point. We built a 
data set where each data point was described by the pro-
ject characteristics and the relative error of the estimation 
model (X, RE). We considered the variables X as inde-
pendent variables and the relative error RE as a depend-
ent variable. For more details on using an x-dependent 
variance, see [BISHOP95A, pp. 211-212]. Then, based on 
the X-dependent median of the relative error (solid line in 
Fig. 13), we split the data set into two subsets (binary 
choice). Consequently, we associated with class A each 
data point having a relative error equal to or greater than 
the X-dependent median (on that point). We associated 
with class B each data point having a relative error less 
than the X-dependent median (on that point) (Fig. 14). 
Then, we trained the BDF in Fig. 14 and Fig. 15 to map 
classes A and B to one and zero, respectively. Based on 
the BDF thus calibrated, we inferred the expected relative 
error range by feeding the values of the project being es-
timated into the BDF. We answered the following ques-
tion, what is the expected error range with a 95% (or 90%) 
of confidence (i.e. credibility) for the considered project 
(i.e. given the X values) avoiding any specific assump-
tion? In other words, we performed a similarity analysis 
in the sense of Section 3.2 (Table 2 and Table 3) to infer 
the expected error range of the project being estimated, 
given the characteristics and related errors of the projects 
used for building the BDF (the history). 

The similarity analysis performed by the BDF has an 
important consequence. In Section 3.2, we argued that 
Fig. 7 was incomplete because of the inability of the usual 
approaches to deal with scope error. Now, we argue that 
the solution proposed in Section 6.1 (Fig. 14 and Fig. 15) 
can be applied to deal with the scope error as well. To do 
so, we have to evaluate the prediction interval in Fig. 7 by 
the BDF (as explained in Section 6.1). Of course, the simi-
larity analysis that we propose has some limitations. 
Nevertheless, we take advantage of such limitations for 
assessing whether or not the BDF is reliable. For instance, 
when we try to estimate prediction intervals on projects 
characterized by values never observed before, we may 

get a scope error in addition to model and assumption 
errors. Therefore, the prediction interval obtained from 
the BDF may be inaccurate (where the accuracy of the 
BDF prediction interval is defined as its capability to in-
clude the relative error of the estimation model [JØR-
GENSEN03]). 

We can execute a scope error analysis (i.e. the similar-
ity analysis illustrated so far) using both estimated data 
(prediction) and actual data (control) as inputs to the 
BDF. Executing the BDF reliability analysis with actual 
data (step 5.B in Fig. 2), we can improve the estimation 
model in terms of model scope. The improvement comes 
about by building a new version of the estimation model 
and adding the data points on which the scope error oc-
curred to the training set of the estimation model. There-
fore, this kind of improvement involves extending the 
estimation model scope. If we added data points on 
which no scope error occurred to the training set of the 
estimation model, the improvement might be only about 
shortening the magnitude of the error prediction interval, 
but no scope extension would be made. 

Executing the BDF reliability analysis with estimated 
data (step 4.A in Fig. 2), we cannot improve the model 
because the relative error is just estimated. The only thing 
that we can do is to mitigate the risk by choosing a suit-
able estimate according the organization risk policy. 
 
6.3 An Estimation Improvement Process overview 
Our approach is modular insofar as each suggested tech-
nique can be eventually improved, integrated, or even 
replaced by better tools based on new findings. What we 
want to keep fixed is the improvement strategy part of 
this approach (Fig. 16). 

We use software cost estimation (i.e. effort prediction) 
to explain and demonstrate the procedure. In particular, 
we use the COCOMO-NASA data set [PROMISE] because 
of its huge popularity in the research community. As a 
public data set, it provides a common ground for experi-
mental replication and discussion. We are not suggesting 
the use of the COCOMO-I model for improving estima-
tion performance, but use it to show how the limitations 
of parametric models can be overcome. 
 
6.3.1 The Estimation Improvement Process 
The Estimation Improvement Process (EIP) that we refer 
to is a specialization of the six steps of the QIP (Fig. 16). 
We need to initialize the loop by building an initial BDF0, 
which is stored in the Experience Base (EB). Then, for 
each new project, we perform an iteration of the EIP to 
evolve the BDF (Fig. 17).  

Iteration 1 of the EIP uses BDF0 and provides the BDF1 
for the next iteration. Analogously, t-th iteration receives 
the BDFt–1 and provides the BDFt. The process in Fig. 17 
can be considered as a state machine describing the evo-
lutionary improvement of the estimation model, where 
the number of the states evolves over time and the next 
state depends only on the last state. 
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Fig. 16. Estimation Improvement Process as a speciallization of the 
Quality Improvement Paradigm (QIP). 

Since the first iteration in Fig. 17 can take place if and 
only if the BDF0 is available, we start first by explaining 
step 6 (Package) in Fig. 2 and Fig. 16.  
 

 
 

Fig. 17. Estimation Improvement Process Iterations 

In particular, we focus on the stage “Build (AEP)” be-
cause the remaining stages have a few differences with 
respect to the QIP [BASILI92B]. 

 

 
 

Fig. 18. The  9-step procedure for building the Bayesian Discrimina-
tion Function (BDF) summarizes  the “Build (AEP)” of step 6. (Pack-
age) in Fig. 2 and Fig. 16. 

The “Build (AEP)” stage is presented in Fig. 18, show-
ing the procedure for building an Automated Experience 
Package (AEP) for estimation model improvement that 
we called Bayesian Discrimination Function (BDF). The 
BDFs can be built and packaged by the experience fac-
tory, where such expertise should reside. This eliminates 
any overhead to the project manager and provides spe-
cific focused knowledge to the project. 

In particular, a project organization: 
- characterizes the context, 
- sets goals, 
- chooses a process, 
- evaluates uncertainty, 
- mitigates risks, 
- makes predictions on its specific project environment, 
- controls the project, 
- evaluates risks, and 
- takes measurements. 
The EF: 
- analyzes data, lessons learned, and feedbacks coming 

from the project organizations, 
- improves the estimation model, and 
- packages the experience by building a new version of 

the estimation model and the BDF, 
- stores experience into the EB. 

As we have illustrated in Section 6.1, the proposed ap-
proach is able to deal with the scope error, as well. Based 
on the considerations in Section 3.2 (Fig. 7), however, 
evaluating the error prediction interval in the case of 
scope and model error is not enough. We have to deal 
with the assumption error, as well. This means that, we 
have to apply the risk exposure analysis (Fig. 8) reported 
in Sections 3.2.7 and 3.2.8. 

Step 4.A in Fig. 16 is summarized in Fig. 19. In particu-
lar, because of the assumption error (Fig. 8) we have to 
consider a variety of possible estimation model inputs, 
represented by overlapping rectangles to show multiple 
sets of inputs, error PIs, and estimate PIs. 

 

 
 

Fig. 19. Evaluate uncertainty and mitigate risks (estimated data). 

Based on the mathematical solution explained in Sec-
tion 6.1, once we get the estimate prediction interval from 
the BDF as shown in Fig. 19, we can apply the mitigation 
strategy explained in Fig. 8. The mitigation strategy con-
sists of fixing the final estimate of the project to minimize 
the estimation risk. For instance, the organization may 
have different risk policies, (1) get the contract accepting 
the risk of earning less money, (2) avoid loosing money 
once the contract has been obtained, or (3) something in 
between. The organization may increase the chance of 
getting the contract by increasing the underestimate risk 
(i.e. decreasing the bid) or decrease the risk of loosing 
money once the contract has been obtained by decreasing 
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the underestimate risk (i.e. increasing the bid), see Fig. 8. 
It is important noting that step 4.A in Fig. 19 is based on 
feeding the estimated data into the BDF. In fact, we do 
not know the actual data at that time. 

 

 
 

Fig. 20. Improve the estimation model EM (actual data). 

The improvement takes place in step 5.B (Fig. 16) and 
is summarized in Fig. 20. To improve the estimation 
model we need to know the actual data of the project. 
Although we use a relative error measure instead of an 
absolute measure, the magnitude of the estimate predic-
tion interval )O,O( UP

1N
estDOWN

1N
est

++  cannot be used for in-
vestigating the improvement needs of the estimation 
model. We have to look at the error prediction interval 
(MeDOWN, MeUP), i.e. performing the analysis shown in 
Fig. 7 on the relative error. 

When dealing with actual data, the only two kinds of 
error that we have to worry about are model error (intrin-
sic to the model) and scope error (coming from an out-of-
scope use of the model). For model error, improving the 
model means unbiasing the error prediction interval (e.g. 
[c] and [d] in Fig. 7) and/or reducing the magnitude of 
the prediction interval (e.g. [b] and [d] in Fig. 7). Improv-
ing the model in the case of scope error means extending 
the project prediction capability of the model. Based on 
the analysis in Fig. 20, the EIP finishes up by building an 
improved version of the estimation model and the related 
BDF that embodies the current organization experience 
(Fig. 17). 
 
6.3.2 Strategic organization control 
The Estimation Improvement Process in Fig. 16 is a proc-
ess executed for each project organization and supported 
by the EF. For each EIP iteration, the EF produces a new 
BDF. At the beginning of iteration t, we would have a 
number of BDFs, i.e. (BDF0, BDF1, …, BDFt – 1) Fig. 17. The 
number of independent variables included in each BDF 
may be different from each other.  

The set of all of the BDFs (Fig. 17) can be used to trace 
the estimation model improvement over time. For a fixed 
project P, the set of BDFs can be used to figure out 
whether the estimation model has actually been im-
proved, kept the same, or worsened over time (Fig. 21). 

For instance, in Fig. 21, assume that we are at the be-
ginning of iteration t and we would like to investigate the 
evolution of the error prediction interval for the next pro-
ject P over the previous iterations. We feed values de-
scribing P into each element of (BDF0, BDF1, …, BDFt–1). 
Based on the procedure in Section 6.1, we can get a 90% 
(or 95%) prediction interval from each BDF, i.e. we get 
STP = (PIP1, PIP2,…, PIPt – 1, PIPt), where PIP1 is provided by 
BDF0, PIP2 is provided by BDF1, and PIPt is provided by 

BDFt-1. Possible results of such an analysis are shown in 
Fig. 21, where an improvement takes place when the PIs 
shortened over the iterations, the same if their magnitude 
keeps constant, and worsed if their magnitude increases. 

 

 
 

Fig. 21. Error Prediction Intervals provided by each BDF fed with the 
data of the next project P. 

 
Based on this analysis, the latest version of the estima-

tion model may no longer be useful for predicting the 
variable of interest (e.g. effort) because of the increased 
risk. This situation might mean that something has 
changed in the organization (e.g. productivity, the devel-
opment environment, people) and new variables or esti-
mation models should be considered. This means that, the 
process in Fig. 17 may be used by the EF to provide pro-
active support for higher levels in the organization in un-
derstanding changes that cause risks before they occur.  
 
6.4 Building BDFs (the framework) 
The term “framework” is used to denote a set of rules, 
techniques, strategies, methods, and procedures that lead 
to tools (the BDF) for evaluating the risk and uncertainty 
(i.e., prediction intervals) of an estimation model and im-
proving its prediction and inference capabilities. 

In the current section, we delve into the details of the 
approach. We describe activities for (1) building the BDF 
(Fig. 18), (2) using the BDF in evaluating uncertainty and 
mitigating the risk (Fig. 19), and (3) exploiting the BDF for 
improvement (Fig. 20). We will not deal in depth with 
steps 4.B and 5.A in Fig. 16, because they are typically 
addressed in risk management approaches [CMMI]. 

The process for building a BDF flows through three 
different layers, each layer corresponding to a different 
error model: (Error) Data model, (Error) Regression 
model, and (Error) Discrimination model. Each layer pro-
duces an output that is used by the next layer. Outputs 
are, respectively, the relative error sample (DRE), the error 
regression model (EReg), which provides the X-
dependent median of the relative error, and the BDF. 
Each model is composed of three different activities, 
which can be iterated.  

Each output can be viewed as an experience package 
in its own right, representing a different abstraction of the 
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error. For instance, the error data layer is the lowest ab-
straction where we consider estimation model errors, e.g. 
this package is a sample of relative errors (DRE). In the 
second layer (regression), we map DRE to the independent 
variables X to predict the expected error, e.g., this pack-
age is an error regression function (EReg). The discrimi-
nation layer is a higher abstraction where we predict the 
error variability according the project characteristics, e.g. 
this package is the Bayesian Discrimination Function 
(BDF).  
 
6.4.1 Preconditions 
Historical data is available (e.g., the history stored in the 
experience base, Fig. 18). The data set is a QxN matrix 
(DSQxN) where Q represents the number of X variables 
that describe each observation and N represents the 
number of observations (called data points or examples). 
Note that, DSQxN is also the data set of independent vari-
ables used for building the estimation model (EM). Yact is 
the dependent variable (e.g. actual effort) of the estima-
tion model and Yact, (1xN) is a 1xN vector of Yact values not 
included in DSQxN. Therefore, 
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In Eqn. (21), there are N data points (one for each col-

umn) each described by Q variables (X1, …, XQ). The es-
timation model (EM) provides Yest = EM (DSQxN, b), where 
b represents the parameter values of the EM. In software 
cost estimation, Yest would be the estimated effort on the 
history, Yact the actual effort, and DSQxN the project input 
values. 
  
6.4.2 (Error) Data Layer 
The aim in this layer is to characterize the performance of 
the chosen estimation model according to the relative 
error measure. 
Step 1 – Consider an estimation model 
We mainly refer to improvable models where a linear, 
log-linear, or non-linear parametric function (e.g. machine 
learning) is sought. Model variables may come from a 
known model (e.g., COCOMO-I, COCOMO-II [CO-
COMO2]) or from a specific environment (variables that 
are known for a specific organization). Except for the first 
time, when performing this step, we assume that we have 
an estimation model (EM), see Fig. 17. Therefore, the 
model being selected in this step has already evolved 
over the previous improvement iterations of the EIP. As 
an example, the EM may be a log-linear function where 
variables refer to the COCOMO-I model [CHEN05] or a 
multi-layer neural network for regression based on the 
same variables [FINNIE97]. Of course, we may consider 
other models based on different variables, as well. 
Step 2 – Select a (relative) error measure 
We have discussed several issues about selecting the rela-
tive error measure. In this step, we select an error meas-

ure that can separate spread and bias such as RE or BRE. 
Here we focus on the RE because of its wider popularity.  
Step 3 – Calculate the (relative) error on the history 
Based on the two previous steps and the available histori-
cal data, we can calculate the relative error measures over 
the history (DRE). For instance, choosing RE, we would 
have REi = (Yiact – Yiest)/Yiact for i = 1 to N. Therefore, the 
output of this step is a relative error sample DRE={RE1, 
RE2… REN}. These N error measures represent the per-
formance of the estimation model based on the chosen 
relative error (weighted residuals). We add DRE to the 
data set, DSQxN, , i.e. DS(Q+1)xN ≡ {DSQxN ∪ DRE}, where DRE 
is a 1xN vector as it will be used to build the BDF in step 
9. This union operation is shown in Eqn. (22). Note that 
DRE may also represent the performance of human-based 
techniques as well since the X variables are the variables 
affecting the relative prediction error [JØRGENSEN03]. 
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Where, (Q+1)-th row of the matrix in (22) is 
 

]RE......RE[]x......x[D N1N)1Q(1)1Q(RE == ++  . 
(23) 

6.4.3 (Error) Regression Layer 
The aim of this layer is to calculate a regression function 
predicting the expected error according to the variables 
(X1, …, XQ). As we have shown, when regression assump-
tions are violated, the estimation model can be biased 
depending on the X variables. Because of the bias, it is 
wrong to use univariate statistics such as mean or median 
of the sample DRE to calculate the expected error. We 
should use a regression function EReg (Fig. 18) taking (X1, 
…, XQ) as independent variables and the RE as a depend-
ent variable, i.e. RE = EReg (X1, …, XQ) + ε would be the 
regression model, see Fig. 13. If there is no correlation 
between the X variables and RE, the EReg can be replaced 
with summary statistics on RE such as the median. 

Since we cannot assume that the variables have a 
Gaussian distribution and may be skewed and have out-
liers, the error regression function EReg should be calcu-
lated by a (non-linear) regression function minimizing the 
Minkowski-R distance with R = 1 (non-linear robust re-
gression) instead of using the least squares linear regres-
sion (Sections 3.1 and 3.2). Another approach to calculat-
ing the regression function EReg may be to remove out-
liers making the distributions as close to a Gaussian dis-
tribution as possible and applying the least squares strat-
egy. However, removing outliers may be dangerous and 
unreliable. Therefore, we should remove only the few 
data points that are in strong disagreement with the rest 
of the error sample using a box-plot diagram (or other 
non-parametric techniques [KNOR98], [PAPADIMIT-
RIOU03]) and apply the non-linear robust regression to-
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minimize the Minkowski-R distance with R = 1. Other 
options may be applied as well. We will focus on the one 
based on not removing outliers and estimating a non-
linear regression function to minimize the Minkowski-R 
distance with R = 1. This choice is based on the goal of 
avoiding any specific assumption. 
Step 4 – Select variables and complexity 
In this step, we select the independent variables (X1, …, 
XQ) of the error regression function (EReg) that affect the 
relative error RE and the least complex family of func-
tions in terms of flexibility that describe the dependent 
variable according to the selected independent variables 
(Section 3.6). If the RE is not correlated with any X vari-
able, to estimate the expected RE, we can calculate the 
median of RE, i.e. Median(DRE). It is important noting 
that, since the selected estimation model (EM) is a para-
metric function, the X variables of EReg are the same as 
the X variables of the EM [BISHOP95A]. If we considered 
human judgment-based approaches, the error may also 
be affected by variables other than X, see [JØRGEN-
SEN04A] for some additional explanations. 

Note that, for multi-layer feed-forward neural net-
works complexity refers to the hidden unit number (Fig. 
10) while for polynomials, complexity refers to the degree 
of the polynomial in the sense of Eqns (16) and (17) (Sec-
tion 3.6). The current step is strictly related to Step 5, 
where we look for the best model in terms of generaliza-
tion error (“best” refers to the model that shows the 
smallest generalization error) [DREYFUS05, pp. 134-137].  

To select the most suitable model and variables, we 
apply leave-one-out cross validation (LOOCV) together 
with the exhaustive procedure as explained in Section 3.2. 
We start by considering the suitability of linear models 
with respect to their generalization error, and whether we 
have to increase their complexity (i.e., changing their 
shape) until an acceptable model is found. LOOCV con-
sists of calculating a score for each possible model and 
choosing the best one [DREYFUS05, pp. 134-137]. For in-
stance, the score for each model is calculated by the 
SQRT(MSE) where MSE is the mean of the squared error 
calculated on the data points left out and averaged over 
the scores of the models calibrated by leaving out the data 
points used for calculating the error. To perform LOOCV 
together with the exhaustive variable selection procedure, 
the score has to be calculated for each buildable model by 
changing the number of the input variables (e.g. starting 
with the complete set, we remove a variable stepwise 
backwards until the set has only one variable). For in-
stance, if we had Q input variables then we would con-
sider 2Q possible models, each composed of different 
numbers of input variables. For each model, we calculate 
the LOOCV score and choose the best model among 
them. For each of the 2Q models, we calculate N different 
LOOCV scores, one for each project. The overall cost of 
executing the exhaustive procedure is N * 2Q for one fam-
ily of functions having the same complexity. So, if we had 
Q = 15 variables and N = 77 projects, we should calculate 
77 * 215 = 77 * 32,768 = 2,523,136 different models for only 
one family. Assuming that it takes 0.5 seconds on average 
to calculate the parameters of one model, calculating all 

the LOOCV scores would take about 14 days; and this for 
only one family of functions having the same complexity. 
If on the average for each family of functions, we in-
creased the set of complexities to K, then the calculation 
would take (on the average) K * 14 days. The exhaustive 
procedure is too expensive to be applied in reality. 

Based on the motivations described in Section 3.1, we 
use LOOCV (or K-fold CV) together with Curvilinear 
Component Analysis (CCA), because they avoid perform-
ing the exhaustive procedure and make the model more 
parsimonious [SARCIA08].  

When applying CCA together with LOOCV (Fig. 22), 
instead of considering 2Q possible models (each com-
posed of a different set of input variables), we consider Q 
models, e.g. Q-th model has Q input variables, (Q-1)-th 
model has Q-1 input variables, and the last one has only 
one input variable. Using the example above, the cost of 
this procedure for only one family of functions having the 
same complexity is N * Q. 

 

 
 

Fig. 22. This diagram illustrates the strategy to performing the LOO 
CV with CCA. For instance, in the ith vertical pattern we use Q - (i -1) 
= Q - i +1 components to represent the complete pattern. For each of 
Q vertical patterns we calculate the LOOCV score and keep the best 
model (the one having the smallest score). 

If for each family of functions, we increased the com-
plexity to K on the average, then the number of models 
would be on the average K * N * Q. Moreover, when con-
sidering non-linear models using an iterative procedure 
to calibrate the model parameters, we must try several 
initial variables as the starting point of the iterative pro-
cedure [DREYFUS05]. If the model is linear in the pa-
rameters, we have a closed solution to the calibration pa-
rameter problem and K would be 1. We then pick the best 
model, i.e. the one with the least generalization error. Let 
R be the average number of trail runs, then the cost of 
executing LOOCV with CCA for a non-linear model for K 
different families of function on the average would be R * 
K * N * Q. For instance, with R = 6 repetitions, Q = 15 
variables, N = 77 data points, if each model took 0.5 sec-
onds to be calculated, the overall cost would be about 1 
hour and 10 minutes for each iteration. Therefore, if we 
performed on the average K iterations, the overall cost 
would be K * (1h 10’). 

As we explained in Section 3.1, stepwise regression as-
sumes the sample is not affected by multicollinearity. 
Since we want to avoid any specific assumptions about 
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the selection procedure, we apply CCA instead of using 
other techniques such as stepwise regression. 

LOOCV could also be combined with Principal Com-
ponent Analysis (PCA) [JOLLYFE86], [NEUMANN02]. 
Both CCA and PCA are able to find a shrunken configura-
tion of the complete input pattern that does not suffer 
from multicollinearity (Section 3.4). If we compress the 
information expressed through Q variables by applying 
CCA, e.g. substituting the variables with a shrunken rep-
resentation, we lose information. However, if some com-
ponents among the Qs are redundant, CCA (or PCA) 
turns the complete input pattern into an equivalent repre-
sentation without loosing information. Note that, PCA 
captures the linear relationships and CCA captures both 
the linear and curvilinear ones [DREYFUS05, p. 96]. For 
this improved capability, we suggest using CCA. The 
CCA output is shown in Fig. 22, where there are Q con-
figurations, obtained one by one by fixing the number of 
components for shrinkage. For instance (Fig. 22), the 1-st 
item coincides with the complete input pattern (no 
shrinkage), the 2-nd one is turned into a configuration 
with Q-1 components, i-th one is turned into a configura-
tion with Q-i+1 components, the last one (Q-th) is turned 
into a configuration with only 1 component. In Section 7, 
we will show a practical application with CCA. 

Note that, Steps 4 and 5 are repeated cyclically. We 
start b y considering the first configuration of Q compo-
nents (Fig. 22), and then we perform Step 5. In the subse-
quent executions of Step 4, we consider the remaining 
configurations in Fig. 22. This means that we have the 
same number of executions of Step 5 as of Step 4, Q, as we 
feed each column in Fig. 22 (from 1-st through Q-th), into 
Step 5. 
Step 5 – Look for the best regression model 
For each execution of this step, we receive i-th input com-
ponent calculated by CCA in Step 4.  

For each column in Fig. 22, we consider a set of non-
linear regression models (EReg), where each element of 
this set has increasing complexity starting from 1 for-
ward. For each element of the model set, we calculate the 
LOOCV score. If we increase the model complexity, the 
LOOCV score can no longer decrease [DREYFUS05, pp. 
134-137]; it can stay the same or increase. We continue 
increasing the complexity as the score decreases. If we 
have executed K steps before stopping the procedure, 
then (K-1)-th model is the best (Fig. 22). This (K-1)-th 
model is stored. The procedure goes on cyclically execut-
ing Steps 4 and 5 until all the columns in Fig. 22 have 
been processed. Overall, the best model is the one with 
the smallest LOOCV score among the stored Qs. Note 
that, in performing Steps 4 and 5, we turn the data set 
DSQxN into a shrunken data set XRxN 
 

(DSQxN) ⇒ XRxN  (24) 
 
where R≤Q.  
Step 6 – Estimate the X-dependent error 
Based on outputs of previous steps, we now have a less 
redundant data set (i.e., a shrunken input representation 
of the initial data set). Of course, it may be possible that 

the best data set is the one with the the initial size (no 
shrinking). Based on XRxN, Eqn. (24), we can build a model 
as parsimonious as possible (Section 3.6). 

Then, we calculate the unknown parameters W of the 
error regression function EReg, Eqn (25). 

 
DRE = EReg (XRxN, W)   (25) 

 
where, DRE is the known vector of observed relative errors 
and XRxN is the matrix of input components affecting DRE 
(R is the number of components representing Q variables 
with R≤Q, N is the cardinality of the data set). To fit pa-
rameters W, we can apply iterative methods such as the 
Backpropagation algorithm along with the Levenberg-
Marquardt optimization technique [RUMELHART86], 
[HAGAN94]. Based on the considerations in Section 6.1, 
parameters W have to be fitted by minimizing the Min-
kowski-R distance with R = 1 (robust regression). Note 
that, once parameters W have been fitted, EReg can pro-
vide the X-dependent median of the relative error, Eqn. 
(26), 
 

EReg (XRxN, w) = MeRE  (26) 
 
where w represents the fitted values of parameters W and 
MeRE is the X-dependent median of the relative error on 
the history (XRxN). A two-dimensional example is shown 
in Fig. 13 (solid-line). 

Based on properties and characteristics of the robust 
regression (i.e. the X-dependent median), EReg is able to 
split the data set (history) into two subsets whose ele-
ments represent sets A and B, respectively. Set A is com-
posed of any data point whose relative error is greater 
than the X-dependent median in that point and set B is 
composed of any data point whose relative error is lower 
than the X-dependent median in that point.  
 
6.4.4 (Error) Discrimination Layer 
The aim of this layer is to calculate the Bayesian Dis-
crimination Function (BDF). 

 

 
 

Fig. 23. A 3-D view of the EReg output before applying the CCA. RE 
is the dependent variable and KSLOC and Complexity are the inde-
pendent variables (i.e. X1 = KSLOC and X2 = Complexity). 

As illustrated above, based on the MeRE, we can (1) split 
the sample into two subsets A and B, (2) associate target 1 
with Class A and target 0 with Class B, and (3) calculate 
the best discrimination function BDF by applying 
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LOOCV+CCA and minimizing the cross-entropy error 
function (Section 3.7). 

For instance, in Fig. 23, the clear points represent Class 
A (where the actual RE value is greater than the MeRE in 
that point) and the black points represent Class B (where 
the actual RE value is lower than the MeRE in that point).  
Step 7 – Select variables and complexity 
The independent variables (also called features) selected 
as inputs to the BDF are the Q + 1 variables of Eqn. (22), 
DS(Q+1)xN, i.e. Q variables (X) and the RE. The dependent 
variable of the BDF takes on real values in [0; 1]. For in-
stance, with respect to Fig. 23, the BDF would be built 
upon 3 features (or input variables), KSLOC, Complexity, 
and RE. 

In this step, we select the ‘right’ complexity for the 
multi-layer feed-forward neural network for discrimina-
tion problems. This selection is the same as in Step 4, ex-
cept here we have a different number of input variables 
and the dependent variable is bounded in [0;1]. We apply 
the LOOCV with Curvilinear Component Analysis. Since 
the sought model deals with discrimination problems, the 
LOOCV score has to be calculated by selecting the model 
that can classify all of the data points in DS(Q+1)xN (history) 
with the most correct classification rate, i.e. hopefully a 
100% correct classification. For instance, a 100% correct 
classification means that the neural network can correctly 
discriminate all the data points in the data set DS(Q+1)xN 
with no misclassification error. The shrunken input con-
figurations are fed into Step 8 where we continue to cal-
culate the LOOCV score as long as it is decreasing. 
Step 8 – Look for the best discrimination model 
This step is the same as Step 5, except that again we have 
one more input variable (i.e. Q+1) and the output variable 
is bounded in [0; 1]. Fig. 22 can still be applied by turning 
the number Q into Q+1. We receive Q+1 shrunken input 
configurations from Step 7 one by one and calculate, for 
each of them, the LOOCV score for models with increas-
ing complexity (where the complexity is still expressed by 
the number of the hidden units). Again, we stop increas-
ing model complexity when the score starts to increase 
(see Step 5). The procedure executes Step 7 and Step 8 
cyclically until all Q+1 shrunken input configurations 
have been processed. In performing Steps 7 and 8, we 
turn the data set DS(Q+1)xN into a shrunken data set X†SxN. 
That is, 
 

DS(Q+1)xN ⇒ X†SxN   (27) 
 
where S (≤ Q+1) is the number of input components and 
N is the cardinality of  X†SxN. 
Step 9 – Calculate the Bayesian Discrimination Function 
In this step, we show the process for building the Bayes-
ian Discrimination Function (BDF) using the shrunken 
input matrix X†SxN.   

Let Γ be a random variable (Section 3.7), which is a 
function of a vector of features X†S, and is equal to 1 when 
the input belongs to A, 0 otherwise. We build Γ by obser-
vations in X†SxN such that Γ = 1 if RE ≥ MeRE, i.e. if the rela-
tive error RE on an observation in X†SxN is greater than its 
X-dependent median calculated by Eqn. (26). Γ = 0 oth-

erwise. 
Based on Eqn. (18), Γ is defined as follows: 
 

Γ: (X†SxN) → {0, 1} . (28) 
 

Based on the theorem in Eqn. (18), the regression function 
of Γ is the expected value of Γ given x. This means that, if 
we calculate the regression function of Γ by minimizing 
the cross-entropy error function, we get the posterior 
probability of class A, given x. In particular, the function 
that we have to fit is 
 

PP = BDF(X†SxN, U)  (29) 
 
where, PP is the known N-vector of {0, 1} given by Eqn. 
(28), i.e. 1 if RE ≥ MeRE and 0 otherwise. The BDF is the 
function that calculates the regression function of Γ (rep-
resenting the Posterior Probability of Class A, given x), 
X†SxN is the shrunken known observation matrix, and U is 
the set of unknown parameters, which define the BDF. 

Based on the Backpropagation algorithm together with 
some optimization techniques such as Levenberg-
Marquardt [RUMELHART86], [HAGAN94], we can esti-
mate U. Once U has been calculated, if we feed the BDF 
with XSxN, we obtain  
 

Pr(A|x) = E(Γ|x) = BDF(X†SxN; u)  .  (30) 
 
Where Pr(A|x) is the posterior probability of class A, 
given x with x∈X†SxN, and u represents the estimated val-
ues of U. 
 
6.5 Prediction by the BDF 
We can use the BDF for both prediction and model im-
provement. The former takes place in the end of step 4.A, 
while the latter takes place in the end of step 5.B (Fig. 16). 
In the current section, we deal with prediction. In the next 
section, we will deal with improvement. As a further ref-
erence, step 4.A is represented in Fig. 19 (Section 6.3). To 
carry out step 4.A (i.e. making the prediction), we apply 
the risk exposure procedure reported in the end of Sec-
tion 3.2 and shown in Fig. 8, with some additional im-
provements. 

In Section 3.2, we argued that the analysis in Fig. 8 was 
incomplete. The problem was that the traditional meth-
odologies that we used for calculating the estimate pre-
diction intervals dealt with neither the scope nor the 
model error in case of regression violations. To overcome 
such limitations, we suggested applying the mathematical 
solution presented in Section 6.1, a methodology that re-
quires an instance of the BDF, which has to be available 
into the EB, before the Estimation Improvement Process 
(EIP) can take place (Fig. 16). 
 
6.5.1 Estimating (Bayesian) error prediction intervals 
EIP starts with a project organization retrieving the BDF 
from the EB. To cope with assumption error, a project 
organization has to consider a variety of possible estima-
tion model inputs. Assume that there are C most likely 
inputs describing the project P being estimated, i.e. I = 
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)I,...,I,I( C21 , where i-th element is represented by vari-
ables of (X1, X2, … , XQ). The i-th instance gets the values Ii 
= (x’1i, x’2i, … , x’Qi) with i = 1 to C. For instance, each ele-
ment of set I may differ from the other by project size, 
complexity, or something else. Moreover, for each Ii, the 
project organization associates a subjective probability 
that Ii occurs for P, i.e. )IPr(),...,IPr(),IPr( C21 . Note that, if 
project organization managers have no information for 
assigning those probabilities, then the uncertainty has to 
be considered as its maximum, 
i.e. C/1)IPr(...)IPr()IPr( C21 ==== . 

We feed each element of set I into the BDF and, based 
on the procedure shown in Fig. 14 and Fig. 15, obtain as 
many (Bayesian) error prediction intervals, i.e. [Me-
DOWN(I1), MeUP(I1)], [MeDOWN(I2), MeUP (I2)], … , [Me-
DOWN(IC), MeUP (IC)] (Fig. 24).  

Each (90/95% credibility) error prediction interval can 
be obtained by fixing values of the variables X and letting 
the RE vary as explained in Section 6.1 and shown in Fig. 
24. 
 

 
 

Fig. 24. Inverting the BDF. Estimating error prediction intervals from 
the assumed inputs by applying the mathematical solution in Section 
6.1. 

6.5.2 Scope error evaluation algorithm (similarity analy-
sis) 
Since we now use the BDF, the magnitude of the error 
prediction intervals takes into account any kind of model 
error and we can figure out whether or not inputs in the 
set I will bring about a scope error. In Section 3.2 (Table 
3), we described two different problems with scope error. 
The first involved a project P2 whose characteristics had 
been partially observed previously in projects A and B 
(Table 2). The second involved a project P3 never ob-
served before. Situations 2 and 3 in Fig. 25 show how to 
deal with both kinds of scope error. 
 

 
 

Fig. 25. BDF reliability and scope error analysis. 

In situation no. 1 (Fig. 25), the error prediction interval 
provided by the BDF includes the expected relative error 
RE, where the expected relative error is provided by the 
RE median or the EReg (Section 6.4, Step 6). Therefore, 
the BDF can be considered reliable and the error predic-
tion interval accurate (the scope error is acceptable). In 
situation no. 2, the error prediction interval provided by 
the BDF does not include the estimated relative error. 
Then, it can be a warning that the BDF is unreliable and 
the error prediction interval is inaccurate, i.e. the scope 
error may be unacceptable. Actually, we are not sure 
whether a scope error may happen. We have to check the 
actual values once they are available (see Section 6.6). 
Situation 2 may show that, the data set has an insufficient 
number of observations to allow the building of the BDF. 
In that case, we would have a scope error. Conversely, the 
actual observations may exclude this conjecture when the 
actual relative error would fall within the interval. This 
may happen if the x-dependent median (EReg) or the 
median that we use to split up the RE sample would not 
be accurate. In that case, there would not be any scope 
error. For prediction purposes, however, before knowing 
the actual values, we should consider situation 2 as a po-
tential scope error. 

Note that, situation no. 2 (Fig. 25) can be improved. We 
can make the error prediction interval accurate even 
though the BDF stays biased. It can be done by increasing 
the (upper or lower) interval endpoint beyond the ex-
pected RE so that the interval can contain the expected RE 
itself. This kind of improvement is useful only if the mag-
nitude of the final error prediction interval is acceptable 
in the sense of Fig. 7. If the magnitude exceeds the accept-
able threshold, this correction is not recommended. 
Therefore, situation no. 2 may not be a problem because it 
can be turned into situation no. 1 (increasing uncertainty). 

With respect to situation no. 3, there is no error predic-
tion interval to use, i.e. the BDF is not able to provide any 
interval. This happens when the historical data used for 
building the BDF (Section 6.4) did not include data points 
similar to the project being estimated. The Backpropaga-
tion algorithm cannot generalize information if no infor-
mation is available [DREYFUS05]. Therefore, we are sure 
that a scope error will occur in situation 3. Mathemati-
cally, this case is not about “overfitting” [DREYFUS05]. 
Technically, the point here is that the classification capa-
bilities of a neural network decrease when it is no longer 
able to provide significant results. Usually, researchers 
and practitioners use this characteristic to design new 
experiments and gather new information. We exploit this 
characteristic to detect and evaluate the scope error im-
pact on the relative error. 

Based on Fig. 25 we can perform a scope error analysis 
for each error prediction interval in Fig. 24. Based on the 
Jørgensen’s strategy [JØRGENSEN03], i.e. getting an es-
timate prediction interval applying Exn. (9), we can turn 
the error prediction intervals of Fig. 24 into estimate pre-
diction intervals (Fig. 26), i.e. we calcu-
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Fig. 26. Turning error prediction intervals into estimate prediction 
intervals. 

This operation takes the bias out of the model by correct-
ing the estimates, as explained in Section 3.2. Removing 
the model bias from the estimates by applying Exn. (9) 
improves the estimates (not the model). Of course, some 
of the intervals in Fig. 26 may not be available because of 
scope error. 

We should apply now the procedure shown in Fig. 8 to 
get the ultimate estimate, i.e. the one mitigating the esti-
mation risk. 
 
6.5.3 Risk exposure analysis 
After performing the procedure in Fig. 26, assume we 
have the error prediction intervals in Fig. 27, with C = 4. 
That is, assume we have four possible inputs describing 
project P with four different probabilities, respectively, as 
shown in Fig. 27. Note that, input no. 3 has no estimate 
prediction interval because of the scope error. Neverthe-
less, it has a 15%probability of occuring.  
 

 
 

Fig. 27. Risk exposure analysis. 

We can now apply risk exposure analysis. We build 
the histogram (and so eliciting the probability) of each 
segment obtained by projecting each interval endpoint 
onto the x-axis. Based on the risk mitigation strategy of 
the organization, we choose the ultimate estimate for pro-
ject P, i.e. 1N

estO + . In Fig. 27, we chose the estimate corre-
sponding to the median. This means the risk exposure 
analysis of the organization is aimed at having the same 
probability for both underestimates and overestimates. 

If the organization wants to reduce the risk of underes-
timating (usually the most severe [MCCONNELL06]), we 

would choose a value greater than the median (i.e. on the 
right side with respect to the median). To make the risk of 
underestimation minimum, we would choose the value 
corresponding to the point “Up”. As we have already 
explained, we may apply different risk mitigation strate-
gies. Nevertheless, since an underestimate is usually con-
sidered more severe than an overestimate [MCCON-
NELL06, pp. 21-26], we should pick an estimate in [Me-
dian, Up] (Fig. 27). 

In Fig. 27, we considered a 15% chance of a scope error  
happening as acceptable. Suppose now the organization 
decides that anything greater than a 10% scope error is 
unacceptable, then this estimation model would be too 
risky. Then they should change the approach, e.g., use a 
human based approach, until additional historical data is 
available. Then they can revert to this approach, calibrate 
another model, and check out the acceptability level. 

It is worth noting that unlike traditional methodolo-
gies, the presented approach is able to improve the per-
formances of parametric estimation models by taking into 
account model error regression violations, such as scope 
error, and assumption error at the same time. Moreover, 
the approach is able to signal in terms of risk whether the 
available historical data is sufficient for building the pa-
rametric estimation model or not. 
 
6.6 Model improvement using the BDF 
Once actual data is available, we can check whether the 
prediction was accurate enough. In particular, whether 
the relative error, i.e. RE = (Actual Effort – 1N

estO + )/ Actual 
Effort (where 1N

estO +  is the ultimate estimate, Section 6.5), 
fell into the interval [Down; Up], Fig. 27. Such an analysis, 
however, cannot be used for model improvement. To im-
prove the estimation model, we need to evaluate the 
model behavior using actual values. 

To perform such an improvement analysis, we exploit 
the BDF, the expected RE (Median or EReg), and the ac-
tual RE. Note that, the actual RE is different from the ac-
tual relative error calculated by the ultimate estimate (see 
above). As we explained in Section 6.3 through Fig. 20, we 
first feed the actual input Iact into the BDF and than exe-
cute the analysis. 
 
6.6.1 Scope extension algorithm (posterior similarity 
analysis) 
Since there is no uncertainty with respect to the input 
values (even though we might get some measurement 
error, see Fig. 9), we do not consider the assumption error 
anymore, i.e. once actual data is available, we deal with 
model error and scope error. The improvement analysis 
starts with evaluating the scope error (Fig. 28). 

Situations 1.a and 1.b in Fig. 28 refer to situation 1 in 
Fig. 25, where the expected RE falls within the interval. In  
situation 1.a there is no scope error (i.e. no scope exten-
sion). Both the expected RE and the actual RE fall within 
the error prediction interval. Rebuilding a new instance of 
the estimation model including the actual project data in 
1.a (i.e. the procedure explained in Section 6.3 Fig. 17) 
does not extend the scope of the EM. 
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Fig. 28. Scope extension analysis on Fig. 25. 

In situation 1.b, there is also no scope error. This is be-
cause the error prediction interval (EPI) is reliable (the 
BDF was correctly built), but the actual RE falls outside 
the interval. This situation is similar to the traditional 
evaluation of outliers in statistics. If we included the pro-
ject in 1.b in the training set when building a new version 
of the EM, we might observe an inclusion of the expected 
RE within the interval, but the model would not extend 
its scope. Therefore, situation 1.b would lead to increasing 
the uncertainty of the EM, event though it may make the 
error prediction interval closer to reality. 

Therefore, we should decide whether it is worth in-
cluding that project data in the training set for building 
the next version of the EM. In fact, situation 1.b may inply 
that some kind of model error would affect the EM unac-
ceptably. In that case, we may decide not to include the 
project data in the next building procedure of the EM 
since we would not remove the model error (e.g., finding 
the missing variables, the right model complexity). How-
ever, when we have too “few” data points to build the 
EM, as is usually the case in software engineering, the 
best we can do is to use projects like those of 1.b to build a 
new version of the EM. 

 Situations 2.a and 2.b in Fig. 28 refer to situation 2 in 
Fig. 25, where the expected RE falls outside the interval. 
In situation 2.a, we can make sure that no scope error oc-
curs because the actual RE falls within the interval even 
though the interval does not include the expected RE. 
This means that the BDF was biased because of the me-
dian rather than for a lack of observations. Therefore, 
situation 2.a is similar to situation 1.a apart from the fact 
that the EReg (or median) used for splitting up the RE 
sample did not represent correctly the expected value of 
the RE. 

Situation 2.b refers to situation 2 in Fig. 25. Unlike 
situation 2.a, in situation 2.b, the actual RE falls outside 
the interval. This situation occurs not because the EReg 
(or the median) did not correctly represent the expected 
value, but the problem is that there are not sufficient ob-
servations to build the BDF. Therefore, situation 2.b refers 
to a scope error because of this lack of observations. Re-
building a new instance of the estimation model with that 
data point extends the scope of the EM and we would 
observe a shorter distance between the actual RE and the 

interval, or possibly an interval that includes the RE. Note 
that, this kind of improvement would increase the EM 
uncertainty making the prediction interval more credible.   

Situation 3 in Fig. 28 refers to situation 3 in Fig. 25. We 
duplicated it for the sake of completeness. As we have 
already explained in Fig. 25, situation 3 leads to increas-
ing the scope of the model. This happens when there is no 
interval because the data set did not have data similar to 
the considered project. Therefore, if we rebuilt the EM by 
including the project in the training set, we would ob-
serve a scope extension. Of course, including only one 
data point may not be sufficient. Nevertheless, situation 3 
leads to extending the EM scope. 
 
6.6.2 Model-error improvement algorithm 
To check whether the model error affects the EM, we ex-
ploit the error prediction intervals with respect to the zero 
point. In particular, Fig. 29 shows four cases (4, 5, 6, and 
7) arising from both situation 1 and 2 in Fig. 25. 

Situation 4 (Fig. 29) does not need improvement be-
cause the model error is within the utility thresholds and 
the model is unbiased (it includes zero), see also Fig. 7. 
Note that, situation no. 4 does not mean that the estima-
tion model cannot be further improved. We can improve 
the model as far as the prediction error is different from 
zero. In situation 4, we just mean that the uncertainty is 
acceptable for the organization goals. 

In situation 5, the estimation model remains unbiased 
even though the magnitude of the error prediction inter-
val is unacceptable. Improvement involves shrinking its 
magnitude. 

 

 
 

 Fig. 29. Model error analysis on situations no. 1 and 2 in Fig. 25. 

To do that, we can try to include some dummy vari-
ables into the estimation model [BISHOP95A, p. 300], 
[KEUNG08]. Dummy variables are (dichotomous) cate-
gorical variables that group the available data points into 
distinct subsets. To check whether the improvement with 
dummy variables has been effective (the interval is 
shorter), we can apply the procedure in Fig. 17 and the 
analysis in Fig. 21. 

In situation 6, the estimation model is biased. That is 
because of one or more missing variables (i.e. we did not 
consider some relevant independent variables affecting 
the dependent variable of the estimation model) or the 
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estimation model is not flexible enough. To improve the 
model we can try to increase the model flexibility by in-
creasing the degree of the polynomial, the number of the 
hidden units for neural network, or we may apply a loga-
rithmic transformation (log-linear regression). Note that, 
if the estimation model is linear in the parameters we can 
turn it into a non-linear-in-the-parameter model as ex-
plained in Section 3.1 and subsequently increase its flexi-
bility. If such an improvement falls short of improving 
the model, the only thing that we can do to improve it is 
to find the right independent variables affecting the de-
pendent variable. If we do not find the right variables, the 
model cannot be improved. Note that, due to the analysis 
in Fig. 29, we are able to identify the EM improvement 
needs. To find the right variables we can use previous 
research, experts, or context analysis (Section 3.1). Situa-
tion 1.d can be improved by applying the improvements 
of both situation 1.b and 1.c. 

It is worth noting that, since situations 1 and 2 in Fig. 
25 and situations 4, 5, 6, 7 in Fig. 29 are independent of 
each other, the model and scope errors may affect the 
estimation model at the same time. As an example, if the 
project were classified as situation 2.b in Fig. 28 and situa-
tion 7 in Fig. 29, we would infer that the EM would be 
affected by scope error and model error (biased and un-
acceptable spread) at the same time. 
 
6.7 Discussion 
When applying Exn. (9) to turn the error prediction inter-
vals into estimate prediction intervals (see Fig. 26), we 
actually make estimates unbiased since we deal with a 
relative measure of error. However, it only happens when 
the error prediction interval is reliable and unbiased 
(situations 4 and 5 in Fig. 29). In situations 6 and 7, apply-
ing Exn. (9) may not make the estimates unbiased. The 
real problem for prediction that we have to worry about 
is to shrink error prediction intervals. This is one of the 
real benefits of using relative errors for evaluating the 
estimation model uncertainty proposed by Jørgensen et 
al. [JØRGENSEN03]. 

Note that, considerations in Fig. 29 are similar to the 
ones made in Fig. 7. There are some differences, however. 
The main difference is that the traditional methodologies 
used in Fig. 7 cannot deal with the scope error quantita-
tively, i.e. they are not able to discriminate among all of 
the situations in Fig. 28. Moreover, error prediction inter-
vals in Fig. 7 have been calculated without considering 
any regression violation. So, if we used traditional meth-
odologies as in Fig. 7 instead of applying the proposed 
approach, we would confuse the scope error with the 
model error and we would not be able to improve the 
model. 

To avoid such a misleading situation, many research-
ers suggest not undertaking the development of projects 
never dealt with before, i.e. projects where a scope error 
may happen. As we have already explained in Section 3.2, 
Kitchenham et al. [KITCHENHAM97] suggest applying 
the portfolio concept to overcome this problem. While, 
Jørgensen et al. deal with this issue by assuming that they 
are able to select historical projects on which the estima-

tion model has the same accuracy [JØRGENSEN03]. An-
gelis et al. [ANGELIS00] deal with the problem by apply-
ing the bootstrap method. Once they select similar pro-
jects to make a baseline for prediction, the selected data 
points may be not enough to make any prediction, i.e. 
calculating statistics [KIRSOPP02B]. Then, a resampling 
procedure such as bootstrap may somehow enlarge the 
data set for calculating and making significant the re-
quired statistics. 

We argue that, (1) the portfolio concept cannot be ap-
plied to every situation hence it is not a solution to the 
scope error. (2) The Jørgensen et al.’s assumption stated 
above might lead to taking very different projects into 
account so the error prediction interval may be incor-
rectly calculated. (3) The bootstrap method cannot make 
sure that the error prediction interval is correct hence we 
may base our inference on wrongly assumed uncertainty. 
Conversely, the proposed approach overcomes such limi-
tations and assumptions by using a particular kind of 
multi-layer feed-forward neural network (i.e. the BDF), 
which is able to detect and discriminate between scope 
error and model error. Moreover, the proposed approach 
exploits benefits of parametric estimation models (e.g., 
estimates come from mathematical applications, the proc-
ess is traceable and repeatable) and avoids their draw-
backs (i.e. unreal parametric assumptions). 

7 THE CASE STUDY 
In this section, we apply the approach to the NASA CO-
COMO data set [PROMISE] by considering different 
models (e.g., linear, log-linear, and non-linear). The  
analysis aims at demonstrating the application of the 
proposed approach using real data. Conclusions enacted 
from this case study offer some new insights for the pro-
jects developed at NASA. 

Regarding the improvement procedure, we focus on 
both improving accuracy and decreasing the uncertainty 
of the estimation model. The best model will be the one 
having the best accuracy and the least uncertainty among 
those considered. We first build a linear model. Because 
this shows to perform poorly on both aspects (i.e. accu-
racy and uncertainty), we improve the model by consid-
ering a log-linear transformation. The resulting model 
performs very well. To improve the log-linear model 
from an uncertainty point of view, we include some cate-
gorical variable as independent variables. Since the na-
ture of the approach is to evolve the model over time by 
adding the results of new projets, we show that further 
rebuilding the log-linear model with new non-outlier pro-
jects (see Fig. 28) does not make the uncertainty worse. 
But rebuilding the log-linear model with new outlier pro-
jects makes the model more risky; a price we may have to 
pay if we are moving into new territory with the projects 
we are developing. We stop improving the model because 
we have use up all of the variables in the considered data 
set. In real cases, however, we would continue improving 
the model from an accuracy and uncertainty point of 
view trying out new variables and models. 

An important consideration arising from this study is 
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that, the uncertainty analysis proposed above is useful for 
model selection as well. In particular, along with the tra-
ditional model selection techniques based on accuracy, 
the one that we propose in this work is based on selecting 
the model that shows the least uncertainty among the 
available models. Note that, the uncertainty comparison 
has to be performed over a fixed test set of projects (16 
projects in this study). Instances of models are linear, log-
linear, non-linear, and generalized (e.g., non-linear in the 
parameters). 

 
7.1 The Context 
Consider the situation where NASA is the learning or-
ganization [BASILI92B] using measurement [BASILI94A] 
and, from 1971 to 1987, they developed 8 projects, e.g., 
Hubble Space Telescope, involving 93 software systems. 
We start with our analysis at the beginning of 1985, when 
NASA has already developed 77 software systems so 
their experience is based upon those 77 software systems, 
which we will use as the basis for prospective evalua-
tions, risk analysis, and model improvement. In fact, the 
NASA’s goal is to exploit such experience to evaluate un-
certainty in estimating the effort of the 16 next software 
systems (from 1985 to 1987). Since we actually know the 
data from these 16 software systems, we can use them to 
carry out an overall iteration of the proposed framework 
as explained in Section 6.2 (Fig. 17). 

As a learning organization, NASA also has the goal of 
shortening the risk and improving their models to better 
manage resources such as time, personnel, and budget.  

 
7.2 Applying the framework 
Based on Fig. 18, we now apply the procedure to build 
the first instance of the BDF as explained in Section 6.3. 
 
GQM template: Analyze the uncertainty (risk) of a linear 
regression model for the purpose of evaluation with respect 
to the Relative Error (RE) from the point of view of the pro-
ject managers in the context of NASA’s projects. This goal 
focuses our study. 
 
7.2.1 Preconditions 
Historical data is available according to the COCOMO-I 
variables. We call instances of the data set “data points” 
or “projects”. Note that, what we call a project or data 
point is actually the project undertaken to develop an 
individual software system. This name must not be con-
fused with the NASA’s projects, which are only 8 
(de,erb,gal,X,hst,slp,spl,Y), and include several software 
systems. 
 
7.2.2 (Error) Data layer 
The data set [PROMISE] is composed of 93 project in-
stances. Each instance is described by 24 attributes (Table 
4). In particular, “Size”, 15 COCOMO-I multipliers, “Ef-
fort”, and 7 attributes describing further characteristics of 
the NASA software system (project ID, project name, 
category of application, flight/ground system, NASA 
center, “YEAR” finished, and development mode). Note 
that, “Effort” is measured by calendar months of 152 

hours, including development and management hours 
[BOEHM81]. 
 

TABLE 4 
DATA SET DESCRIPTION 

 

 
 

For demonstration purposes, we start with a simple 
linear model and will demonstrate how to identify risks 
and make improvements. To calibrate the linear model 
we start by considering only numerical variables. It is also 
possible to include categorical variables into the model as 
we explained in Section 6.6. The problem is that, regres-
sion models cannot deal with categorical variables. They 
have to be coded first. A common mistake is to use an 
ordinal value for nominal scale. For example, consider the 
attribute “NASA center” in Table 4. If we included an 
ordinal variable (e.g., 1, 2, 3 …) in the regression model to 
describe the NASA centers, the parameters of the result-
ing regression model would be biased because the train-
ing procedure would create parameters for an ordered 
variable, while that variable has no order at all. The right 
way of coding categorical values is to use dummy (di-
chotomous) variables. If we have C categorical values, we 
create (C – 1) dichotomous variables, i.e. the variable can 
have values 0 or 1. For instance, if we have 5 NASA cen-
ters, then “NASA center 1” becomes “0001”, “NASA cen-
ter 2” becomes “0010” and so on up to “NASA center 5”, 
which becomes “0000” [BISHOP95A], [KEUNG08]. If we 
considered irrelevant categorical variables, however, the 
regression model would increase in complexity (i.e. a 
greater number of parameters) and it would be less par-
simonious. Thus, we should include dummy variables 
with care. 

Note that, we only use the attribute “YEAR” to split up 
projects, i.e. the first set (before 1985) was composed of 77 
software systems, and the second set (after 1984) was 
composed of 16 software systems. In particular, the first 
set was considered as a training set (history) and the sec-
ond set was considered as a test set (what being esti-
mated), i.e. the object of our analysis. 
Step 1 – Consider an estimation model 
The estimation model selected is a linear regression 
model trainined by Ordinary Least Squares (OLS). It is 
based on input variables from the COCOMO-I model 
where the dependent variable (DV) is the effort and the 
independent variables (IVs) are the size and 15 CO-
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COMO-I multipliers. 
 

TABLE 5 
OLS ESTIMATES 

 

 
 

Based on the training set, we applied OLS and obtained 
the parameter estimates in Table 5. 

The analysis of variance (ANOVA) shows that there is 
a statistically significant relationship between the IVs and 
the DV at 99% confidence level (p-value = 0.0000). The R-
Squared statistic indicates that the model explains 66.4% 
of the variability in the DV. The adjusted R-Squared sta-
tistic is 57.5%. The standard error (SE) of the estimate 
shows the standard deviation of the residuals to be 
796.56. The model may be simplified by removing the 
parameters having a p-value greater than 0.10 in Table 5 
(e.g. rely p-value = 0.86). Although applying stepwise 
regression may simplify the model, it would require the 
assumption that multicollinearity does not affect the 
model as explained in Section 3.1. For this reason, we do 
not apply the stepwise regression. 
 

TABLE 6 
PREDICTION ON THE TEST SET 

 

 
 

We can now use the model for prediction by feeding 
the test set into the model. Table 6 shows the results, 
where EST stands for “Estimated Effort”, “ACT” stands 
for “Actual Effort”, RE stands for “Relative Error”, and 
“ID” stands for software system identifier. Notice that, 
Table 6 contains results that are ordered based on their 
size. From a software engineering point of view, the esti-
mation model (EM) provides three unreliable results, IDs 
36, 39, and 37 because they are negative value while the 
effort may only be a positive value. From a mathematical 
point of view, these values are correct and they must not 
be considered as outliers in statistical terms. The implica-
tion is that, the model cannot be used for predicting the 

effort of those projects. Consequently, from a software 
engineering point of view, the RE value for those projects 
makes no sense even though it is correctly calculated 
from a mathematical point of view. 
 

 
 

Fig. 30. Prediction intervals for the test set in Table 6 obtained by 
appling the canonical formula. The circled values of EST represent 
negative estimates that cannot be used for prediction. 

Based on formula (12), we calculate the prediction in-
tervals for the estimates in Table 6. As Fig. 30 shows, the 
prediction intervals are definitively huge and they do not 
have any utility for evaluating uncertainty and improve-
ment needs as explained in Section 3.1. Since effort cannot 
be negative, the prediction intervals in Fig. 30 can be 
shrunk by ignoring the lower negative limit. Even though 
we considered prediction intervals having their lower 
limit on zero, the situation would not change, because the 
interval would be too wide, as well. Further, having an 
estimated effort equal to zero would make no sense ei-
ther. 

From a prediction point of view, the situation does not 
change. The prediction intervals do not provide any util-
ity because the magnitude is too high. Note that, tradi-
tional approaches stop the analysis at this point. Fig. 30 
aims at showing that, in evaluating risk and uncertainty 
arising from a parametric estimation model, we cannot 
rely upon traditional statistics. We need better techniques 
that are able to show the real improvements that the esti-
mation model requires as we explained in Section 6.1. 
Step 2 – Select a (relative) error measure 
We selected RE as a relative measure of error. Where REi 
= (ACTi – ESTi) /ACTi with i = 1 to the sample size, see 
Eqn. (5). 
Step 3 – Calculate the error on the history 
To calculate the REi for each point of the historical data 
set (i.e. the training set composed of 77 data points hence i 
= 1 to 77), we feed the training set into the EM. Once we 
obtain the estimates, we apply the Eqn. (5). The sample 
error that we obtained is shown in Table 7. In particular, 
the RE sample is ordered according to the project size. 
“ID” refers to the original data set identifier, “RE” is the 
relative error, “ACT” is the actual effort, and “EST” is the 
estimated effort. Notice that, we hightlighted with dark 
rectangles (Table 7) the data points where the EM pro-
vided negative values of effort. As explained above, since 
our analysis is based on as few assumptions as possible, 
we decide not to remove these points from the data set. 
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The reason for this choice is that, these data points are 
correctly calculated even though they make no sense from 
a software engineering point of view. Therefore, the ac-
tual behavior of the estimation model in terms of estima-
tion error over the history has to be evaluated on these 
data points, as well. 

 
TABLE 7 

RELATIVE ERROR SAMPLE (RE) ON THE TRAINING SET 

 
 
7.2.3 (Error) Regression layer 
In this layer, the aim is to calculate the expected (relative) 
error arising from the estimation model over the historical 
data. As we have exaplained in Section 4, assumptions on 
which the EM is based may not hold (e.g., the error is x-
correlated). Then, a better measure of the expected RE 
would be the output of a robust regression function hav-
ing as a DV the RE and as IVs the x variables. Therefore, 
we apply the procedure explained in Section 6.4 (Step 4) 
where we called such a robust non-linear regression 
EReg, Eqn. (26). 
Step 4 – Select variables and complexity 
In order to select the model having the lowest generaliza-
tion error, we calculate the Leave-One-Out Cross-
Validation (LOOCV) score, as explained in Section 6.4 
(Step 4). 
Step 5 – Look for the best regression model 
Here we find the best regression model for extimating RE, 
i.e., EReg. Fig. 31 shows the results. In particular, the non-
linear model having the lowest generalization error (best) 
is the one composed of 4 hidden units and 16 input com-
ponents.  The result in Fig. 31 is confirmed by the fact 
that, we have also calculated the LOOCV score for a lin-
ear-in-the-parameter model (linear polynomial), which 
provided the value 0.86, which is greater than the best 
value (0.56). 

 

 

 
Fig. 31. Leave-one-out cross validation and curvilinear component 
analysis applied to a non-linear model based on Multi-Layer Feed-
Forward Neural Networks for regression (EReg). 

The number of iterations to generate Fig. 31 was 5856 
(with R = 6, the procedure is explained in Section 6.4, Step 
4) and it took about 2 hours with an ordinary laptop. 
 

Step 6 – Estimate the x-dependent error 
Based on the result in Fig. 31, we selected the non-linear 
model based on neural networks having 16 input compo-
nents and 4 hidden units. 

 

 
 

Fig. 32. Calculating the expected relative error (RE). 

Then, we calculated the expected RE by applying a ro-
bust regression, which provided an x-dependent median. 
Fig. 32 shows the results. The straight line in Fig. 32 is a 
line that points out whether the model estimates are valid 
(RE = 1). In particular, if an RE data point (Actual RE) 
falls above this line, it means that that point comes from a 
negative effort estimates and it is invalid. If the RE data 
point falls below the line, the effort estimate from which it 
comes is valid (i.e., the estimate is positive). Note that, 
there are 12 data points falling above the straight line as 
shown in Table 7 by the dark rectangles. 

In Fig. 32, we drew the median of the RE, as well 
(dashed line). The median seems to be a better representa-
tive of the expected RE than the x-dependent median cal-
culated by the robust regression because the REs are not 
biased with respect to the x-axis. For this reason, we use 
the median for splitting up the relative error sample, not 
the x-dependent median. It is worth noting that, even 
though the error sample seems not to be biased with re-
spect to the KSLOC (it is very close to zero), the assump-
tion on the homoscedasticity is definitively violated. In 
fact, the error variance decreases as the KSLOC increases. 

Based on the median (dashed line in Fig. 32), we calcu-
late the target values, as follows. If the actual RE is not 
less than the median then the target value is (Γ =) 1, it is 
zero otherwise (Γ = 0). Table 8 shows the target values 
obtained, see Eqn. (18) in Section 3.7. Note that, the “ID” 
row in Table 8 is the project identifier of the data set 
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(Table 4) ordered by the KSLOC. 
 

TABLE 8 
VALUES OF THE RANDOM VARIABLE Γ (TARGET) 

 

 
 
7.2.4 (Error) Discrimination layer 
The aim in this layer is to build the discrimination func-
tion that we called BDF. As explained in Section 6.4, the 
BDF is a non-linear function based on multi-layer feed-
forward neural networks having a real variable ranging 
in [0;1] as a dependent variable (DV) and the variables 
(KSLOC, 15 COCOMO multipliers, RE) as independent 
variables (IVs). To calibrate such a BDF, we consider the 
target values in Table 8 as observations of the DV and 
consider the COCOMO NASA data set together with the 
RE values in Table 7 as observations of the IVs. Then, we 
apply the Backpropagation together with the Levenberg-
Marquardt algorithm to obtain the parameters of the BDF. 
Before applying the Backpropagation, we select the best 
non-linear model by executing LOOCV and CCA, as ex-
plained below.  
Step 7 – Select variables and complexity 
To select the non-linear discrimination model having the 
lowest generalization error, we calculate the LOOCV 
score, as explained in Section 6.4 (Step 7).  
Step 8 – Look for the best discrimination model 
Fig. 33 shows the results. In particular, the non-linear 
model having the lowest generalization error (best) is the 
one composed of 1 hidden unit and 17 input components. 
The best generalization error obtained by executing the 
procedure was 0.04. 

 

 
 

Fig. 33. Leave-one-out cross validation and curvilinear component 
analysis applied to a non-linear model based on Multi-Layer Feed-
Forward Neural Networks for discrimination (BDF). 

Step 9 – Calculate the Bayesian function 
Based on the result in Fig. 33, we select the non-linear 
model based on neural networks having 17 input compo-
nents and 1 hidden unit. Then, we calculate the BDF by 
minimizing the cross-entropy error function by the Back-
propagation together with the Levenberg-Marquardt al-

gorithm (Fig. 34). 
 

 
 

Fig. 34. Representation of the BDF as a non-linear function of 17 
independent variables. The BDF provides a measure in between 
[0;1] of how far the input is from the median. Mathematically, the 
BDF provides the posterior probability that the input is not less than 
the median (i.e. the posterior probability of class A, Fig. 14). 

We stopped the training procedure when all of the 
data points in the training set were correctly classified. 
Notice that, a data point is correctly classified when the 
BDF provides a value greater than or equal to 0.5 for the 
target “1” and less than 0.5 for the target “0”. Other stop-
ping techniques may be applied (e.g., validation-set stop-
ping technique). 
 
7.2.5 Prediction by the BDF 
The BDF that we calculated by applying the 9-step 
framework can be used both for prediction and model 
improvement. Nevertheless, we show the use of the BDF 
for prediction partially because the COCOMO NASA 
data set does not include estimated inputs. Since we 
know the actual values of the projects being estimated, 
there is no assumption error on the inputs. Therefore, we 
execute analysis in Fig. 25, but we do not execute analysis 
in Fig. 27 (Risk exposure analysis). As we explained in 
Section 6.5, before using the BDF, we have to invert it, so 
that the BDF yields the RE range where the error of the 
next estimate will probably fall (i.e., what we called 
Bayesian error prediction interval in Section 6.1).   

 

 
 

Fig. 35. Representation of the inverted BDF of Fig. 34.  

Based on the Inv(BDF) in Fig. 35, we can calculate a 95% 
(Bayesian) error prediction interval for each project be-
longing to the test set.  
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Fig. 36 . BDF reliability and scope error analysis.  

To check whether the BDF correctly trained to learn the 
required discrimination function, we run the analysis in 
Fig. 25. The results of such an analysis are shown in Fig. 
36. In particular, the vertical segments represent 95% 
Bayesian prediction intervals and the crossed points are 
the expected RE (median). In three cases (IDs 26, 24, and 
25), the BDF could not learn correctly the required dis-
crimination function (“OUT”). In the remainder cases, the 
BDF performed correctly (“IN”). In real cases, when using 
the BDF for prediction, we can use analysis in Fig. 36 to 
evaluate the reliability of the BDF before using it. As ex-
plained in Section 6.5, using the BDF for predicting pro-
jects 26, 24, and 25 may be very risky, implying that other 
approaches should be used. Once we obtain the actual 
values for each project being estimated, we find out 
whether a scope error actually occurred. 

 

 
 

Fig. 37.Calculating estimate prediction intervals.  

Fig. 37 shows the estimate prediction intervals that we 
calculated by applying Exn. (9). The y-axis represents the 
effort and the vertical segments represent the (Bayesian) 
estimate prediction intervals for the projects being esti-
mated. “X” is the actual effort and “–” is the estimated 
effort. “?” refers to the fact that the EM provided negative 
effort estimates (invalid). 

 

 
 

Fig. 38 . Comparison of prediction intervals calculated by the tradi-
tional methodology (Fig. 30) and the proposed one (Fig. 37) in the 
worst case. 

Note that, the intervals in Fig. 37 are much narrower 
than the ones calculated with the traditional approach 
(Fig. 30). As hinted above, if we considered only the up-
per limit of each estimate prediction interval as the worst 
case of our prediction, the suggested approach may de-
finitively shrink the prediction intervals making them 
more useful for prediction (Fig. 38). In Fig. 38, the solid 
rectangles represent the upper limit of the prediction in-
tervals in Fig. 30 (traditional), while the other rectangles 
represent the upper limit of the prediction intervals in 
Fig. 37 (proposed), “X” stands for actual effort and “–” 
stands for estimated effort. Apart from the projects on 
which the EM provides negative effort values (i.e., 36, 39, 
and 37), where the comparison is not possible, the pro-
posed approach provides better prediction intervals in 
terms of magnitude than the traditional one for all of the 
remaining cases except on project 52 where the interval 
does not include the actual RE. A valuable result is that 
the proposed approach is a valid alternative to the tradi-
tional methodology of shrinking the estimate prediction 
intervals for the worst case (where the worst case corre-
sponds to the upper limit of the estimate prediction inter-
val). Note that, it is trivial to see that, the proposed ap-
proach provides better intervals than traditional method-
ologies for the best case as well (the lower limit of the 
estimate prediction interval). 
 
7.2.6 Model improvement by the BDF 
Once we know the actual effort values of the projects in 
the test set, we can calculate the actual RE and perform 
the model improvement explained in Fig. 28 and Fig. 29. 

Fig. 39 shows the model improvement analysis. The ac-
tual RE of each individual project is represented by the dia-
monds and the expected RE is represented by the crossed 
circles. As already discussed in Section 6.6, once we know 
the actual values of the projects, we can check whether the 
potential scope errors (situation 2 in Fig. 25) turns into ac-
tual scope errors. 
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Fig. 39. Model improvement by the BDF in terms of scope error and 
model error. 

In particular, to check it out, we run the analysis in Fig. 
28 situations 2.a and 2.b. Since the actual RE falls outside 
the interval for projects 26 and 24, we conclude that those 
two cases represented a scope error. That is, the data set 
had an insufficient number of observations similar to pro-
jects 26 and 24 to build the BDF. This means that, we can 
extend the scope of our estimation model (i.e. the linear 
regression function in Table 5) by rebuilding it with the 
projects labeled “EXT” in Fig. 39 (26 and 24). Since the 
actual RE falls within the interval for project 25, we con-
clude that no scope error occurred and the problem was 
with the median used to split up the RE sample. 

With respect to the outlier analysis (situation 1.b in Fig. 
28), we can see that (Fig. 39), only the RE on projects 25, 
22, and 38 fall within the interval while the RE falls out of 
the interval for the remaining projects, where we consider 
the BDF as reliable on project 25 for the reasons explained 
above. This means that if we used the remaining projects 
to build a new version of the EM, the uncertainty of the 
EM would increase. So, to avoid degrading the EM we 
should not include those data points in the rebuiling of 
the model. An alternate choice would be to include those 
projects anyway because of the scarcity of observations 
and the potential of improving estimates if there are more 
data points of that kind. 

Fig. 39 allows us to perform a model error analyis. 
Since we fixed a relative error magnitude of 0.3 as accept-
able, we need to find categorical variables to shrink the 
magnitude of the error prediction intervals on projects 33, 
34, 13, 35, 52, 21, 23, and 22 (unbiased solid squares in Fig. 
39). The magnitude of the RE was acceptable on projects 
36, 39, 37, 40, 38 (unbiased circle in Fig. 39). 

The EM is biased on projects 26, 24, and 25. In that 
case, more suitable variables should be found and a more 
flexible function should be tried (e.g. log-linear models, 
non-linear models). 

Overall, the EM can be extended in its scope by includ-
ing projects 26 and 24 in the training to build a new ver-
sion of the EM. The EM uncertainty can be improved by 
(1) including in the model the right categorical variables, 
(2) using a more flexible function, and (3) taking out out-
liers. Projects 25, 22, and 38 can be included in the train-
ing, but they will neither improve nor worsen the model. 
 

7.2.7 Including (irrelevant categorical variables) 
As shown in Table 4, the COCOMO NASA data set pro-
vides some categorical variables that can be included in 
the estimation model (EM) to check whether the EM in-
proves accuracy and lessens the risk. Including categori-
cal variables in the EM involves the use of dummy vari-
ables. If we use dummy variables that are irrelevant, 
however, we can make the EM worse because dummy 
variables split up observations into distinct sub sets. This 
data splitting increases the number of similarity groups. If 
the categorical (dummy) variables are irrelevant, a higher 
number of projects may be affected by scope error. This is 
because, for each subset of similar projects, there would 
be a less data points available to build the BDF. By con-
trast, if we have relevant categorical variables and a suffi-
cient number of observations, we would shrink the 
(Bayesian) error prediction intervals. 

 

 
 

Fig. 40. The effect of including irrelevant dummy variables. 

Fig. 40 shows the effect of including the categorical 
variable “Mode” in the EM. Since “Mode” has three cate-
gories (“Semidetached”, “Embedded”, “Organic”), we 
included two dummy variables (D1, D2) in the EM and 
coded the categories as follows, “Semidetached” became 
{D1 = 0, D2 = 1}, “Embedded” became {D1 = 1, D2 = 0}, 
“Organic” became {D1 = 0, D2 = 0}. 

As Fig. 40 shows, the number of projects where a scope 
error would occur increased from two (26 and 24, in Fig. 
39) to six (36, 39, 13, 37, 40, and 38, in Fig. 40). Notice that, 
the accuracy in terms of RE was similar to the previous 
one. The comparison can be made by calculating the 
mean and the standard deviation of the relative error on 
the same test set for both models [BOEHM81], 
[CONTE86], [MYRTVEIT05]. The linear model has 
Mean(RETsS) = -0.525 and STD(RETsS) = 3.116. The linear 
model with dummy variables has Mean(RETsS) = -0.740 
and STD(RETsS) = 2.751. Therefore, the former is less bi-
ased than the latter, i.e. its Mean(RETsS) is closer to zero 
than the latter. However, the former has a higher spread 
than the latter, i.e. the STD(RETsS) of the former is greater 
than the STD(RETsS) of the latter. Since many organiza-
tions are still using MMRETsS, we also show this statistic 
(see Section 3.2 for its definition and the discussion about 
its inappropriateness for comparison [KITCHEN-
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HAM01]). The linear model has MMRETsS = 2.396 and the 
linear model with dummy variables has MMRETsS = 2.214. 
Based on the discordant statistics, we concluded that the 
former and the latter have similar accuracy with respect 
to the considered data set. 

It is worth noting that, the error prediction interval on 
project 25 became unbiased while the interval on project 
38 became biased. This is because of the splitting effect 
discussed above, which increased the occurrence of scope 
errors. As a practical consideration, even though using 
categorical variables may increase the EM accuracy in 
terms of RE, the risk of getting a scope error may increase. 
This is why using categorical variables should be done 
with care. 

We also considered the other categorical variables in 
Table 4. However, the results in terms of magnitude of 
error prediction interval were similar to the one shown in 
Fig. 40 and in some cases were even worse (not shown). 
 
7.2.8 Improving the model shape (logarithmic transfor-
mation) 
We tried to improve the model by considering a loga-
rithmic transformation. The logarithmic transformation 
provides a non-linear model that is linear in the-
parameters for which the least squares estimates can be 
calculated without using iterative procedures. Unlike the 
linear model, the logarithmic model provides much more 
accurate and less risky estimates than the linear model. 

To build the log-linear model, we considered only nu-
meric variables in Table 4, i.e. the dependent variable 
(DV) was the “Effort” and the independent variables (IVs) 
were the “Size” and the “15 COCOMO-I multipliers”. 
Then, we calculated the logarithm of each value and ap-
plied the least squares procedure for estimating the 
model parameters. To build the BDF, we followed a pro-
cedure with the same settings as the one shown above. 
Then, we used the BDF to calculate the error prediction 
intervals (Fig. 41). 

 

 
 

Fig. 41. Model improvement by applying a log-linear transformation. 

The EM provided valid estimates (non-negative) for all 
of the projects considered. In Fig. 41, the vertical intervals 
represent the 95% (Bayesian) error prediction intervals for 
the considered projects. The diamonds are the actual RE 
values and the crossed circles are the expected RE values 
(the median). As we can see in Fig. 41, all of the intervals 

were acceptable and valid, i.e. they included the expected 
RE (the median), except for project 38 in which the inter-
val does not include the expected error (“EXT”). Based on 
the decision algorithm in Fig. 28 (2.b), we concluded that 
the EM would cause a scope error on project 38. Con-
versely, the EM would not provide any scope error on the 
remaining projects. 

The outlier analysis shows that there are only three 
data points that fall outside the interval (33, 24, and 21). It 
is worth noting that, the EM is much less risky than the 
linear one. In fact, only four intervals exceed the accept-
able RE limit of 0.3 (36, 37, 52, and 22), while the linear 
model had 8 intervals exceeding the limit (rectangles in 
Fig. 39) and the linear model with dummy variables had 
10 unaceptable intervals (rectangles in Fig. 40). Except for 
project 38, all of the intervals were unbiased. 

To calculate the estimate prediction interval related to 
the RE intervals in Fig. 41, we applied Exn. (9). The re-
sults are shown in Fig. 42, where the vertical intervals are 
the (Bayesian) estimate prediction intervals for the project 
considered, “X” stands for the actual effort, and “–” 
stands for the estimated effort by the log-linear EM. 

 

 
 

Fig. 42. Estimate (effort) prediction intervals related to Fig. 41. 

As Fig. 42 shows, the estimation model was definitely 
improved with respect to the linear one (Fig. 37). In fact, 
all of the estimates fell within the expected range except 
for projects 33, 24, and 21 (outliers) and project 38 (unac-
ceptable scope error). 

 

 
 

Fig. 43. Comparison of prediction intervals calculated by the tradi-
tional methodologies and the proposed one (worst case). 
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In Fig. 43, we again look at a worst case scenario (ex-
amining the upper prediction interval endpoints to esti-
mate the risk). We compared the (effort) prediction inter-
vals calculated by the traditional methodologies (solid 
rectangles in Fig. 43) and the ones provided by the pro-
posed approach (the unfilled rectangles in Fig. 43). As we 
can see in Fig. 43, the proposed approach was definitely 
able to shrink the intervals. The only actual effort value 
that fell outside the interval was on project 38. 

As an application of the proposed approach, before 
undertaking a project, a software organization may use 
the upper endpoints of the rectangles in Fig. 43 to figure 
out whether the risk of a failure (e.g. exceeding the 
schedule, budget, and quality) would be acceptable. In 
particular, the approach is able to provide a useful risk 
evaluation in quantitative terms that traditional method-
ologies cannot yield because the intervals produced are 
too large and the regression assumptions are violated. 
 
7.2.9 Including (relevant categorical variables) 
Based on Fig. 41, we can continue to improve the model 
in terms of accuracy and risk by applying the approach 
again, e.g. including categorical variables in the model. 
We tried to consider the same categorical variable as the 
one taken for the linear model, i.e. “Mode” (Table 4). To 
this end, we applied the same dichotomous (dummy) 
coding as above. The result is shown in Fig. 44. 

 

 
 

Fig. 44. Error prediction intervals for the log-linear model with the 
categorical variable “Mode”. 

Unlike Fig. 40, the categorical variable “Mode” is relevant 
for the log-linear model. In fact, all of the error prediction 
intervals have been shrunk and made unbiased. In par-
ticular, the intervals on projects 36, 37, 52, and 22 (squares 
in Fig. 41) turned into acceptable intervals (circles in Fig. 
44). However, the relative error on project 37 turned in an 
outlier. Instead, the interval on project 38 turned into a 
valid one, even though the relative error became an out-
lier. 

From an accuracy point of view, the variable “Mode” 
did not improve the model. In fact, the model without 
categories (Fig. 41) has Mean(RETsS) = -0.005, STD(RETsS) = 
0.045, and MMRETsS = 0.030. The model with categories 
(Fig. 44) has Mean(RETsS) = -0.026, STD(RETsS) = 0.049, and 
MMRETsS = 0.044. From an uncertainty (risk) point of 
view, however, the latter is less risky than the former be-

cause the magnitude of the intervals in Fig. 44 is less than 
the magnitude of the ones in Fig. 41. Another interesting 
effect is that, the categorical variable “Mode” was unable 
to improve the linear model in terms of uncertainty (Fig. 
40) but, it was able to improve the log-linear one (Fig. 44). 
From a computational point of view, if we select some 
dummy variables as relevant for a model (e.g. linear) and 
then turn the model into another model (e.g. log-linear or 
non-linear) having the same variables as the former, the 
relevance of the dummy variables has to be rechecked. 
 
7.2.10 Using uncertainty for model comparison 
The uncertainty analysis presented in this work has an 
important implication for software organizations and 
practitioners in terms of model comparison. Analyses in 
Fig. 41 and Fig. 44 show that, one estimation model can 
be more accurate than another, even though the former 
may be more risky than the latter. Therefore, unlike tradi-
tional approaches, model selection should be based upon 
both accuracy and uncertainty.  

Before claiming that one model is “better” than an-
other, however, an organization should specify the nature 
of the comparison and the context where the comparison 
is made. For instance, one should say that a model is bet-
ter than another in terms of accuracy (or in terms of un-
certainty/risk) and select the one that is more appropriate 
with respect to organization’s goals. In the example 
shown above, an organization aiming at accuracy should 
select the log-linear model without categories (Fig. 41). 
An organization aiming at shrinking the uncertainty 
should select the the log-linear model with categories 
(Fig. 44). It is worth noting that, some authors [MCCON-
NELL06], [JØRGENSEN03], however, argue that provid-
ing one-point estimates (i.e. aiming at accuracy) is ineffec-
tive and even misleading. Organizations should aim at 
uncertainty, i.e., estimates should always be provided in 
terms of prediction intervals (two-point estimates) be-
cause two-point estimates are more realistic and useful 
for software organizations. 
 
7.2.11 Proving that “outliers” behave as outliers  
With respect to Fig. 44, we rebuilt the log-linear estima-
tion model with the same categories as above by includ-
ing only outliers (33, 37, 24, 21, and 38). The result is 
shown in Fig. 45. 

 

 
 

Fig. 45. Error prediction intervals for the log-linear model with the 
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categorical variable “Mode” trained with five more outliers in Fig. 44. 

From an accuracy point of view, the model in Fig. 44 is 
less accurate than the one in Fig. 45 because the former 
has Mean(RETsS) = -0.026, STD(RETsS) = 0.049, and 
MMRETsS = 0.044, while the latter has Mean(RETsS) = -
0.007, STD(RETsS) = 0.045, and MMRETsS = 0.035. This re-
sult was predictable because five projects in Fig. 45 (i.e. 
the outliers of Fig. 44) were included in the estimation 
model training. Therefore, only 11 projects out of 16 were 
independent from the remaining projects. Table 9 shows 
the relative errors of both models (i.e. models in Fig. 44 
and Fig. 45) on those projects. 

From an uncertainty point of view, however, the effect 
of including outliers in the training set of the model in 
Fig. 45 made the uncertainty worse as we expected (com-
pare the magnitude of the intervals of both figures). In 
particular, the intervals on projects 36, 52, 22, and 38 in-
creased insofar as their magnitude exceeded the accept-
ability threshold (RE = 0.3). 
 

TABLE 9 
RELATIVE ERROR COMPARISON 

 

 
 

Note that, both models have 5 outliers, three in com-
mon (33, 24, and 21) and two different (52 and 25 in Fig. 
44, and 37 and 38 in Fig. 45). The log-linear model with 
dummy variables is unable to explain these points be-
cause of the model error, which can be removed if and 
only if further explanatory variables are included in the 
model and /or a more suitable (flexible) model is consid-
ered. So, we tried to use a non-linear model (MLFFNN), 
but we did not get any significant improvement (not 
shown). We concluded that the improvement depended 
on the lack of some relevant variables, rather than the 
model shape/complexity. Then, we stopped trying to 
improve the model because we used up all the variables 
available in the COCOMO NASA data set. 
 
7.2.12 Proving that “non-outliers” behave as non-
outliers 

With respect to Fig. 44, we also rebuilt the log-linear 
estimation model with categories by not including the 
outliers and using the remaining projects, i.e. 36, 39, 26, 
34, 13, 35, 40, 52, 23, 25, and 22. The result is shown in Fig. 
46. 

Fig. 46 shows the expected result, i.e. the magnitude of 
the error prediction intervals did not increase with re-
spect to Fig. 44. Nevertheless, from an accuracy point of 
view, the model in Fig. 46 did not improve. In fact, it has 
Mean(RETsS) = -0.024, STD(RETsS) = 0.198, and MMRETsS = 
0.146. Note that, the model in Fig. 46 has three outliers as 
the model in Fig. 44 (33, 24, and 21). It has three more out-
liers (36, 52, and 25), and two fewer outliers (37 and 38) 
than the model in Fig. 44. The outliers in Fig. 46 are the 

same as the ones in Fig. 45, apart from project 36, where 
the interval did not include the actual RE. This means 
that, actually the log-linear model with dummy variables 
is not able to explain these points confirming the conclu-
sions made above. 

 

 
 

Fig. 46. Error prediction intervals for the log-linear model with the 
categorical variable “Mode” trained with eleven non-outliers in Fig. 
44. 

7.2.13 Discussion 
Analyses in Fig. 44, Fig. 45, and Fig. 46 show that the un-
certainty (risk) calculated by the (Bayesian) prediction 
interval on the relative error is more stable and reliable 
for evaluating and selecting estimation models than using 
some summary statistics on the relative error expressing 
the estimation model accuracy. 

This case study shows that, to improve the accuracy of 
the linear estimation model, we have to change the model 
shape (i.e. applying a logarithmic transformation). To 
improve the model from an uncertainty point of view, we 
have to include the categorical variable “Mode” in the 
log-linear model. Moreover, the case study shows that, 
further rebuilding the EM with either oultiers or non-
outliers does not improve the accuracy. Nevertheless, 
rebuilding the model with non-outliers does not increase 
the uncertainty. Therefore, it is acceptable to include non-
outliers as expected.  

It is important to note that, the outlier analysis given 
above provides a criterion that we can use to drop those 
data points that worsen the estimation model in terms of 
accuracy and uncertainty. This means that, once we build 
the BDF we can use it for selecting those data points that 
are less risky for building a new version of the estimation 
model, dropping the ones that deteriorate the model. Of 
course, this criterion can be used to remove from the data 
set old data points, as well. Thus, by applying the speci-
fied analysis, we can get a less risky model over time. 

Based on the uncertainty analysis, before predicting a 
new project, we should consider different models as 
stated above and select the one that provides the least 
risk. Once the most accurate and least risky model has 
been selected among those considered and we can use the 
model for predicting new projects and continue improv-
ing the model repeatedly. 
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8 CONCLUSION 
The problem addressed in this work was that the tradi-
tional methodologies for estimating prediction intervals 
(i.e. the most probable interval where the next estimate 
will fall) of parametric models provide intervals that are 
too wide to be useful in terms of prediction accuracy and 
model improvement. This is because, unlike the Bayesian 
statistics, frequentist statistics (traditional approaches) 
exclude the opportunity of using posterior information. 
Traditional approaches only use prior information. In-
cluding posterior information in the statistics calculation 
allows the shrinking of prediction intervals. We showed 
that the traditional methodologies do not take into ac-
count the fact that assumptions on which the estimation 
models are based may not hold (Section 3.1.1). We 
showed that the estimation risk analysis performed by 
traditional methodologies might be incorrect because they 
do not deal with the consequences of violations (Section 
3.1.2).  

We provide an alternative point of view to the tradi-
tional way of improving the accuracy of estimation mod-
els. We not only try to improve the model as traditional 
methodologies do, but also correct the estimates by ana-
lyzing the estimation error trend of the model over its 
history of application. Unlike current research, we focus 
on defining a strategy for improving the model over time 
by assessing the actual errors versus the expected error 
ranges. We use the uncertainty as a discrimination pa-
rameter, not only the accuracy as usually done. To ana-
lyze the estimation error trend of the model, we define an 
additional model based on a specific multi-layer neural 
network for discrimination, which helps us calculate the 
estimation error of the model, without making specific 
assumptions. Once we know the estimation error trend of 
the model, we can correct the estimates, improving the 
accuracy of the model. 

This new point of view is based on the fact that, any 
model is a limited representation of the reality. Therefore, 
errors cannot be removed completely. That is why we use 
an additional model (e.g. the neural network for dis-
crimination) for overcoming the limitations of the estima-
tion model (Section 6.1). These limitations concern the fact 
that, estimation models violate assumptions on which 
they are built without dealing with the consequences of 
those violations. Moreover, unlike traditional techniques, 
the defined neural network is able to cope with scope 
(Sections 3.2.6 and 6.5.2) and assumption errors (Sections 
3.2.7 and 6.5.3), as well. To highlight the impact of viola-
tions against the estimation model, we use the neural 
network because it is based on the Bayesian paradigm, 
which can consider all of the available information (prior 
and posterior information) as explained above.  

Another important point discussed in this work is that, 
traditional estimation approaches use accuracy to select 
the best model. Then, based on the organization’s history, 
they find an estimation model that is able to improve the 
accuracy calculated by some summary statistics over the 
estimation error. This is not a suitable way of improving 
the accuracy because it depends on the statistics used for 
evaluating the accuracy. The approach proposed in this 

work is based upon evaluating and selecting candidate 
estimation models by uncertainty, which is invariant with 
respect to the accuracy statistics (Section 7.2.10). In other 
words, the approach selects the least risky model by un-
certainty. This means that, instead of finding the most 
accuracte model, we find the least risky model (i.e. having 
the least uncertainty). However, to apply such an ap-
proach, we need a methodology that is able to provide 
narrow an uncertainty range and is based on avoiding 
any assumption over the model. That is why we defined 
the proposed approach extending the traditional method-
ologies. 
 
8.1 Benefits and drawbacks 
Benefits of applying the proposed approach are that the 
approach  
− supports learning organizations because it focuses on 

evolving the estimation model over time, 
− is based on an Estimation Improvement Process (EIP) 

that makes the approach formal, traceable, repeatable, 
and improvable over time, 

− introduces the concept of packaging the experience of 
using the estimation model into a feed-forward multi-
layer  neural network, therefore it facilitates packag-
ing, storing, delivering and exploiting the experience 
of an organization over time, 

− can deal with the scope error, assumption error, and 
model error at the same time, 

− defines an “a priori” strategy to mitigate the estima-
tion risk by considering all kinds of errors, 

− shrinks the magnitude of the prediction intervals to 
make them useful for prediction and model improve-
ment, 

− allows comparing models in terms of uncertainty and 
accuracy at the same time, 

− is not based on any specific assumptions, 
− can be applied to estimating any software engineering 

variable such as effort, size, defects, number of test 
cases, fault proneness over any stage of the project 
(e.g. inception, construction); the approach does not 
care about the development process hence it can be 
used for iterative, agile, and traditional development 
processes,  

− improves the competitive advantage of learning or-
ganizations by improving the estimation model over 
time; the approach does not focus on finding a un-
reachable best estimation model, but it deals with im-
proving the parametric model that each organization 
uses and trusts, 

− is able to perform a similarity analysis in terms of risk 
between the historical projects and the one being esti-
mated, i.e. the approach can answer questions like the 
following, what is the estimation uncertainty on this 
project considering its similarities with my past pro-
jects? 

− can be implemented as a stand-alone estimation 
methodology or used for supporting experts and or-
ganizations together with other estimation techniques. 
Software applications based on such an approach off-
load the complexity of dealing with neural networks 
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to experts and allow project managers to rely on effec-
tive and powerful automatic tools for analyzing esti-
mation risk and improving the estimation model 

− helps the highest organizational management make 
proactive strategic decisions by checking automati-
cally over time whether the software development en-
vironment is changing with respect to its history, 

− can be implemented as a support software tool and 
used by organizations that apply human-based esti-
mation methodologies, 

− is modular insofar as it can be eventually improved by 
new findings. Modularity allows us to apply the ap-
proach partially, e.g. we may only run the similarity 
analysis or check whether our estimation process is 
improving over time, 

− The proposed approach has a few drawbacks. The 
approach requires 

− being able to apply neural networks and their optimi-
zation techniques, 

− a support software tool  implementing the overall pro-
cedure, 

− the expense of rerunning the training procedure for 
enhancing the estimation model capabilities as the his-
tory grows, 

− spending non-negligible time for training the network. 
What we proposed in this paper is of course a first step 

towards using computational intelligence techniques for 
dealing with statistical problems that traditional method-
ologies have not solved. We hope that researches and 
practitioners will contribute to enhance and consolidate 
research in this rising field of software engineering that 
promises fascinating solutions. 
 
8.2 Future work 
In this work, we have argued the theoretical benefits of 
the proposed approach and demonstrated its use on exist-
ing model and data (i.e., regression functions calibrated 
on the COCOMO-NASA data set). However, we did not 
empirically evaluate our results against the results that 
traditional improvement methodologies can yield. To this 
end, we are planning a comparative analysis between the 
proposed approach and the traditional ones. 

Further future work is aimed at experiments to in-
crease confidence in the use of uncertainty as a selection 
criterion for estimation models. We believe that uncer-
tainty can be a keystone for eventually evaluating models 
in a consistent way. 

Ideally, we would like to run a pilot study, where we 
apply the approach to a real software development envi-
ronment allowing an organization to control strategically 
their estimation capability (Fig. 21). The organization 
could use the methodology to make proactive decisions 
about the organization’s future, e.g. evaluating whether 
variables are changing in the organization, knowing 
whether new variables are required for figuring out the 
environment, assessing changes, evaluating development 
tools, and evaluating people in terms of capability and 
productivity. 
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