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Abstract— Background: Over the last 60+ years a number of wars 
of different kinds has been taken place worldwide. Scholars refer 
to the latest ones as 4th Generation wars (or warfare) where the 
confrontation is no longer between state actors, but between non-
state actors (mainly guerrilla/insurgents) and state actors. Aims: 
Since the old strategic game theory (e.g. Prisoner’s Dilemma) is 
not able to explain 4th Generation wars because of asymmetry 
and the lack of a timed framework, we define a variation of this 
theory that we call Timed Strategic Game with the aim of 
bringing up the discussion on what it is really needed to plan and 
manage military campaigns such as Afghanistan, Iraq, Libya, 
Somalia, Lebanon, Israel-Palestine, and etc. Method: The theory 
being defined deals with asymmetry and includes a temporal 
dimension. Our definition is completely new. We did not use an 
automaton approach as usually done in game theory. We 
considered a continuous parametric function varying based upon 
the variable time. The use of the variable time in strategic games 
is the main novelty of this work. Results: Based upon the 
definition of “Timed Strategic Game”, we put forward the 
definition of  “Timed Prisoner’s Dilemma” and another one that 
we called IN-OUT game, which was set up specifically to model 
the main features of 4th Generation wars. Furthermore, the 
contribution of this work is also with the definition of Stable and 
Unstable Timed Nash Equilibria, which are the extension of  
“Nash Equilibria” to Timed Strategic Games. Conclusions: In 
this research we show a way of modeling asymmetric strategic 
games over time. Even though the suitability of the application of 
this new theory has to be tried out in practical terms, it is the first 
step to have a theoretical framework where strategic games can 
finally be categorized in terms of time. Additional contributions 
are that the proposed model is general purpose regardless of 4th 
Generation wars; we observed that Timed Strategic Games could 
also help model value-based management, earned value analysis, 
and share-market dynamics.  
Keywords—game theory; asymmetric war; asymmetric games, 
timed Nash equilibrium; stable Nash equilibrium; unstable Nash 
equilibrium; 4th Generation wars. 

I. INTRODUCTION 
This paper addresses from a mathematical point of view, 

one of the most severe problems that have always plagued the 
humankind, i.e., the war. Throughout the 20th and 21st 
centuries, what helped rulers, from a theoretical point of view, 
make the right decisions at the right time has been game theory 
[1], [12], [13]. Literature is extremely reach on using game 

theory in defense and security areas at the time of world and 
cold wars, but it is completely poor or even absent on using 
game theory on 4th Generation wars (the latest). No one has 
managed to state a suitable theory to try to explain, 
analytically, 4th Gen wars. To the best of our knowledge, this 
work on 4th Gen wars is the first attempt to this end. 

The effort that organizations and governments have made 
so far to deal with all kinds of war is only about technology, 
mainly, software and systems (S&S). And, this is particularly 
positive not only at military level, but also for civilians, for 
instance against diseases, natural disasters, and resource 
exploitation. The old game theory on symmetric wars cannot 
help anymore. Cyber defense is the most representative 
example on the current situation where asymmetry makes a 
difference [11]. Few people can attack a whole country.  

It is indisputable that technology has dramatically improved 
military (weapons, control systems etc.) and civil (disaster 
recovery, medical science etc.) power. For instance, improving 
awareness over a number of situations such as warfare, 
homeland security, natural disaster, and transportation control 
is a way of increasing the power of a country. Software 
development is the basis of it, and, perhaps one of the largest 
power-driver worldwide [10], [3]. Other approaches to increase 
power are on how to measure [16], [18] and retrieve [15], [2] 
information, classify people [4], [19], [7], reduce failures [6], 
and analyze risks automatically [17]. 

The point is that technology is not enough to help deal with 
4th Gen wars. We need a theory, which can model this 
particular phenomenon with all its characteristics. An analytical 
model can be taken as a means to which all variations of the 
phenomenon can be linked and thus investigated. Without an 
explicative model, rulers may have the strongest power ever, 
but will not make the right decisions (e.g., on planning and 
managing military operations). The proposed model was 
devised to be complementary to the research on situation 
awareness and S&S. A suitable model of 4th Gen wars, as the 
one we propose here, should be able, at least, to represent the 
following characteristics, which were inferred by the author 
from [9] and [20]: 1) asymmetry of opponents in terms of 
forces, resources, warfare, and strategies, 2) the duration of the 
confrontation lasting forever (i.e., inability to end the 
confrontation), 3) low utility of having military power, in fact, 
the more the confrontation lasts, the more insurgents gain, 4) 
the fact that any strategy/action of organized actors (e.g., state-
actors, GOs, NGOs) returns some benefits right after its 
application, but it inexorably fades away as time goes on, while 
since insurgent-like actors do not have institutionalized 
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strategies, their payoff is generally low, but is almost constant 
over time. 

The analytical model that we define here is completely 
general regardless of 4th Gen wars. Consequently, the model is 
neither right nor wrong. The point is that, whether or not the 
model can fit all the characteristics of 4th Gen wars and explain 
this dreadful phenomenon. What is important to bear in mind, 
however, is that any mathematical model, this included, can 
only explain partially a phenomenon. The model defined here 
is an attempt to represent mathematically the principal 
characteristics of 4th Gen wars; therefore, its utility has to be 
evaluated in the field. An empirical evaluation of the model is 
out of the aim of this work. 

The main contribution of this paper is that we defined a 
timed variation of strategic game theory that we called Timed 
Strategic Game. However, our definition does not use an 
automaton approach. We considered a continuous parametric 
function of time. Additional contributions of this work are: the 
definition of a game called “Timed Prisoner’s Dilemma” and 
the one that models 4th Gen wars, called IN-OUT game. We 
also defined a Timed Nash Equilibrium, which is the temporal 
extension of the Nash Equilibrium, and the concept of stable, 
partially left/right-handed stable, and unstable timed Nash 
Equilibrium. 

This paper is organized as follows. In section II we define 
Timed Strategic Games from a mathematical point of view. In 
Section III we discuss repeated Timed Strategic Games. In 
Section IV we give additional insights on the importance of this 
new theory. In section V we provide some definition and a 
theorem on stability, instability, and partially left/right handed 
stability of Timed Nash Equilibrium. Section VI refers to the 
definition of the game called Timed Prisoner’s Dilemma. 
Section VII is on the definition of the game called IN-OUT, 
which is the game that explains either 4th Gen wars or similar 
phenomena such as value-based management, share-market 
dynamics, and earned value analysis. The paper ends with 
some final remarks and future work. 

II. TIMED STRATEGIC GAMES 
The easiest form of a strategic game is usually presented 

with two players (called player 1 and player 2) and four actions 
(A1, A2, A3, A4) available to players, e.g. A1, A2 available to 
player 1 (row) and A3, A4 available to player 2 (column). 
Sometimes it can happen that A1 ≡ A3 and A2 ≡ A4. There is 
also a payoff function that maps actions to (real) values. 
Formally, a strategic game consists of [14]: 

• A finite set of players (N) 

• A finite set of actions available to each player, let i be a 
generic player with i ∈ N, then Ai is a nonempty set of 
actions available to player i 

• A payoff function (also called utility function) ui: Aàℜ, 
which maps actions to real numbers. 

The utility function u is a preference relation, which only 
depends on A and ℜ. When dealing with two-player strategic 
games, u can be represented by a table as in Figure 1 [13]. 

In strategic games the actions are taken independently, 
simultaneously and each player knows the actions of the others. 
However, the player does not know which action the opponent 
will take. Players are assumed to have a rational behavior, 
which means that a player is fully aware of his alternatives, has 
well-defined preferences, and makes his choices after a 
decision-making process with the aim of increasing his payoff 
(utility). 

 
Figure 1. Representation of a two-player strategic game where each player has 
two different actions available. 

With respect to Figure 1, the individual figure in the table is 
a real number by definition. Note that, those numbers are 
constant once defined. Let us now change this definition stating 
that those numbers can change over time. To introduce the 
concept of time, we do not use the automaton theory as usually 
done in the field of game theory. We consider a continuous 
function that changes based upon the variable time. Formally, 
the strategic game being defined, that we call a Timed Strategic 
Game, is as follows: 

• A finite set of players (N) 

• A finite set of actions available to each player, let i be a 
generic player with i ∈ N, then Ai is a nonempty set of 
actions available to player i 

• A payoff continuous function (that we call timed-utility 
function or timed-payoff function) ui: (A, T)àℜ, which 
maps actions and times to real numbers with (T ⊆ ℜ+ ∪ 
⎨0⎬). 

This definition is new with respect to those that have been 
defined lately [8]. Note that, we will use the following notation 
to denote positive real numbers with the singleton 0, i.e., ℜ0

+ ≡ 
ℜ+ ∪ ⎨0⎬. From a geometrical point of view, since set A of 
actions cannot be represented on a unique Cartesian plane, we 
define a function ui: Tàℜ for each element of set A, i.e. for 
each element of A we have a function ui(k; θ; t) = r, with r ∈ ℜ 
and k and θ two parameters specifying ui. We denote the 
function as ui

A(t) = r. To keep our notation as simple as 
possible, we will use ui

A(k; θ; t) instead of ui(A, k; θ; t) ≡  ui(a, 
b, c, …, k; θ; t) or more easily ui

A(t) when omitting the two 
parameters does not create confusion. We will use ui

a,b,c,…(k; θ; 
t) or ui

a,b,c,…(t) to specify the nature of the mapping between 
actions. A convenient function that we employ to define ui

A(t) 
is as follows: 

 ui
A (k;θ;t) = vA (k;θ;t)dt =

0

t
∫ k

e
t
θ

t
0

t
∫ dt  (1) 
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with k ∈ ℜ, θ ∈ ℜ+, are two parameters shaping the function 
vA(k;θ;t) and t is the variable time. Since k and θ are two 
parameters as defined above, ui

A(k;θ;t) can assume any value 
based upon the values of k and θ. This is the reason why 
equation (1) is not arbitrarily stated. Having a sufficient 
number of observations, one can calibrate the two parameters 
(i.e., k and θ), selecting the most suitable function. Note that, k 
regulates the highness of v, θ is responsible for the wideness of 
v, and e is the exponential. Note that, k and θ have to be treated 
as constants. Since ui

A(k;θ;t) is completely specified by 
vA(k;θ;t), it is important noting that, vA(k;θ;t) denotes the right-
side mathematical function in (1). Sometimes we omit the apex 
A to simplify the notation. As an example, let us state that k=2 
and θ=4, then the payoff function is as follows: 

 ui
A (k = 2;θ = 4;t) = vA (k = 2;θ = 4;t)

0

t
∫ dt = 2

e
t
4

t
0

t
∫ dt.  (2) 

Let us now consider Figure 1 again. We state that each 
value vj, for j = 1 to 8, is provided as follows:  

 vj (k
j;θ j;t) = ui

A (k j;θ j;t) = k j

e
t
θ j

t dt
0

t
∫ .  (3) 

 
Figure 2. The area representing the payoff v in Figure 1 for t = t’.  

Note that, apart from A, equation (3) is only function of the 
time t since kj and θ j are two known parameters. Once we fix a 
value for t, e.g. t_=_t’, equation (3) provides a real value which 
represents the area in Figure 2. It is important noting that, this 
particular shape was chosen to represent the characteristic that 
any military strategy/action returns some benefits right after its 
application, but it inexorably fades away as time goes on. The 
theory is completely valid even if we choose a different shape 
for the function in equation (1) and Figure 2. 

The payoff table in Figure 1 becomes as in Figure 3. 
Generally speaking, each function vj(kj;θ j;t) for j = 1 to 8 is 
different from each other because of parameters kj and θ j. The 
representation in Figure 2 assumes that k is nonnegative. 
However, k can be negative as well, and the curve would be 
drawn symmetrically below the x-axis. Note that, when t goes 
to infinity the integral in (3) would provide its maximum, i.e. 
all the area below the function v(k;θ;t). 

It is important noting that, if the notion of the time does not 
matter the timed-strategic game thus defined can be treated as a 
normal strategic game. That is, the payoff function would 
provide the total area in Figure 2 as t tends to infinity. This 
means that the normal (usual) setting can be considered as a 
specific case of a timed strategic game (long term setting). 

 
Figure 3.  Representation of a timed-payoff function for a two-player strategic 
game for t = t’. 

The function depicted in Figure 2 has some interesting 
features. It is smooth and continuous, arg maxt ui

A(k;θ;t) = θ, 
which is a singleton, and its maximum can be calculated by 
(k•θ)/e. The total area below the curve is k•θ 2 and the part 
being on the left of the vertical line t = θ is always 26.42% of 
the total as well as the remaining area (on the right) is always 
73.58% of the total. The reason why equation (1) is a 
convenient function is because of all these characteristics. 

 
Figure 4. Payoff function for t that tends to infinity. The result kθ 2 is the result 
of calculating the integral in (2). The apex “2” applied to the parentheses 
means power 2. 

Note that, if the time does not matter or we consider an infinite 
time, the payoff function in Figure 3 becomes as in Figure 4 

III. REPEATED TIMED STRATEGIC GAMES 
The game thus defined has the potential of including repeated 
strategic games, as well. A repeated strategic game is a 
strategic game, which is played a number of times with the 
same setting as for a (nonrepeated) strategic game [21]. In 
addition, players can take their actions based upon recording 
the history of the game. It would be the experience gathered by 
playing the game over time. However, repeated games have not 
an explicit time-related setting, which instead is only hinted. 

Let us define a repeated timed strategic game based upon 
the setting of a timed strategic game as defined above. Let us 
assume that player 1 has two actions (A1 and A2) available as in 
Figure 3. Then, a repeated strategic game would be as in Figure 
5. Note that, functions in Figure 5 may be different from each 
other when having different parameters (k,_θ). From t = t0 to t 
= t1 player 1 gets his payoff based upon the function ui

A(k1; θ1; 
t1). Note that, the gain stemming from ui

A(k1; θ 1; t) is 
interrupted by Action 2 even though player 1 gets his payoff 
from ui

A(k2; θ2; t). Therefore, a repeated timed strategic game 
differently from a repeated strategic game takes into account 
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the notion of time related to the time when an action is taken 
and how long an action lasts. 

 
Figure 5. A repeated timed strategic game payoff functions. 

At t = t’ we can compute the entire payoff gained from the 
game by adding the individual contributions from t0 to t’. We 
can compute the payoff for player 2 as well and checking who 
would be the winner. It is important noting that based upon 
this definition of the repeated timed strategic game we now 
have the opportunity to see how the payoff stemming from the 
actions taken by the players unfolds over time. 

IV. INTERPRETATION OF TIMED STRATEGIC GAMES 
In this section we explain why a timed strategic game is 

important as well as the reason why we thought of defining it. 
First, there are a lot of situations where the setting without the 
notion of time is not realistic. We specifically refer to complex 
situations as, for instance, military campaigns. In reality, when 
a party (a player in our case) takes an action against the other, 
his payoff arising from that action is not instantaneous as in 
usual strategic games (which is unreal anyway). The point is 
that, even though we know the payoff stemming from a 
combination of actions, the important thing is to know the 
given payoff with respect to the variable time. For instance, 
what would be best between (a) a price of $10 per year for 5 
hundred years and (b) $50 per year for 1 hundred years? The 
answer is not self-evident. Since the total is always $5,000 the 
only difference is upon the time when money is given. 
Therefore, the best choice would depend upon the need of the 
players’ situation over time in terms of cumulative amount. 

As for military campaigns, the variable time is vital and a 
game that does not take it into account can only explain 
partially the expected results. Even though we are not referring 
to decision-making problems as for the examples (a) and (b), 
the point is that a strategic game with the notion of time would 
be much more useful than its homologous without 
temporization. 

A timed strategic game is the setting to explain not only 
what to do to win the game as usual, but also how the payoff 
function will progress over time giving more insights on the 
evolution of the game for prediction purposes.  

V. NASH EQUILIBRIUM IN TIMED STRATEGIC GAMES 
Stability is a concept that is not new to the field [5] and the 

definition of a Nash Equilibrium [12] is absolutely general to 
be molded to different interpretations. Let ℜ0

+ ≡ ℜ+ ∪ ⎨0⎬. 
We state the following theorem and definitions: 
Theorem 1. Let GT = <N, (Ai), (ui

A(k; θ; t))> be a timed 
strategic game, then for t = t’ for each t’ ∈ ℜ0

+, GT is a 
strategic game in the form <N, (Ai), (ui)>.  
Proof.  To prove the theorem we have to show that (ui

A(k; θ; 
t=t’) includes (at least) the same mapping as the one done by 
function ui: Aàℜ for i ∈ N, i.e., ui be a utility function for the 
game <N, (Ai), (ui)>. Since ui

A maps (A, ℜ0
+)àℜ, it is also 

true, by construction, that ui
A maps Aàℜ for each i ∈ N. We 

have now to prove that the output of ui
A(k; θ; t=t’) for each t’ 

∈ ℜ0
+ is a value r ∈ ℜ. This statement is true by definition 

because once we fix the values for k, θ, and t (i.e., t = t’) the 
integral in (3) is a definite integral providing a real number as 
defined for integrals if the integral exists. However, since the 
function inside the integral in (3) is smooth and continuous, 
we can conclude that every definite integral of the function 
exists. If k is negative the integral in (3) is negative, as well. 
The meaning of a negative integral is that the area would be on 
the negative side of y-axis. ∆   
Definition 1. Let <N, (Ai), (ui

A(k; θ; t))> be a timed strategic 
game, then we define to be a Timed Nash Equilibrium for t = 
t’ a profile a* ∈ A of actions such that for each player i ∈ N 
we have ui

a*-1, a*1(k; θ; t = t’) > ui
a*-1, a1(k; θ; t = t’), or using an 

equivalent notation ui(a*-1; a*1; k; θ; t = t’) > ui(a*-1; a1; k; θ; t 
= t’). This definition underlines that a Timed Nash 
Equilibrium for t = t’ is as such at point t = t’, but for different 
values of t the Equilibrium may not hold anymore. 
Definition 2. We define to be a Stable Timed Nash 
Equilibrium for t = t’ a Timed Nash Equilibrium for t = t’ such 
that it does not exist any value t” for each t” ∈ ℜ0

+ that turns 
the Timed Nash Equilibrium for t = t’ into a non Timed Nash 
Equilibrium at point t = t”. 
Definition 3. We define to be a Partially right-handed Stable 
Timed Nash Equilibrium for t > t’ a Timed Nash Equilibrium 
for t = t’ such that it does not exist any value t” > t’ with t” ∈ 
ℜ0

+ that turns the Timed Nash Equilibrium for t = t’ into a non 
Timed Nash Equilibrium at point t = t”.  
Definition 4. We define to be a Partially left-handed Stable 
Timed Nash Equilibrium for 0< t < t’ a Timed Nash 
Equilibrium for t = t’ such that it does not exist any value 0< 
t”< t’ with t” ∈ ℜ0

+ that turns the Timed Nash Equilibrium for 
t = t’ into a non Timed Nash Equilibrium at point t = t”.  
Definition 5. We define to be an Unstable Timed Nash 
Equilibrium for t = t’ a Timed Nash Equilibrium for t = t’ if it 
exists a couple of value t” and t’” for each t”, t’” ∈ ℜ0

+ such 
that t”< t’ < t’”. In other words, it is always possible to 
arbitrarily fix two values t”, t’” ∈ ℜ0

+ such that t”< t’ < t’”.  

VI. TIMED PRISONER’S DILEMMA 
Based upon the definitions above, we now define a Timed 

Prisoner’s Dilemma game as an extension of the usual 
Prisoner’s Dilemma game (Figure 6). The setting of the timed 
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game is the same as the usual one apart from the payoff 
function that is defined over the variable time t. With respect to 
Figure 6, the condition for the game to be in the form of 
Prisoner’s Dilemma is that v2 > v1 > v4 > v3. As for the iterative 
setting of the game, there is an additional condition, i.e., 2v1 > 
v2 + v3. Note that, actions A1 and A2 are both available to the 
two players. Payoff functions are as in Table1. 

 
Figure 6. Payoff function of the game Prisoner’s Dilemma. 

Note that, based upon values in Table 1 we see that when 
tà+inf (or for a sufficiently large value of t) the game in 
Figure 6 is in the form of Prisoner’s Dilemma because the 
condition that v2 > v1 > v4 > v3 holds, being 32 > 24 > 16 > 8 
and the iterative condition that 2v1 > v2 + v3 is satisfied because 
(2•24) > (32 + 8), i.e., 48 > 40. 

Table 1.Setting of generalized timed Prisoner’s Dilemma. 

j v j k j θ  j Area for     
t = 3 

Total area 
(k•θ2) 

1 v1 7.4 1.8 11.9 24 
2 v2 2 4 5.5 32 
3 v3 5.5 1.2 5.7 8 
4 v4 25 0.8 14.2 16 

The payoff function of timed Prisoner’s dilemma for tà+inf is 
as in Figure 7. The four-payoff functions v1, v2, v3, and v4 are 
depicted in Figure 8.  

 

Figure 7. Payoff functions of timed Prisoner’s Dilemma 

Each function has a different shape as specified in Table 1 
by parameters (k j, θ j) and depicted in Figure 8. 

The interesting point is that, for a sufficient large value of t, 
e.g. tà+inf, the only Nash Equilibrium is for the combination 
(Defect, Defect), i.e. both players decide to Defect. This is not 
an unstable Nash Equilibrium, however. It is a stable Nash 
Equilibrium as usually defined for Prisoner’s Dilemma because 
of the fact that time t is sufficiently long to make the game 
stable. 

Let us now consider t’ = 3 and calculate the area below 
each curve in Figure 8. The results are shown in Table 1 (Area 
for t = 3). Therefore at t’ = 3 the payoff function is as in Figure 
9. Note that, the payoff function in Figure 9 does not refer to 
Prisoner’s Dilemma because the condition v2 > v1 > v4 > v3 does 
not hold. However, in Figure 9 there are two Nash Equilibria 
(Cooperate, Cooperate) and (Defect, Defect). Based upon the 
defined timed strategic game, the prisoners’ situation changes 
over time. However, the two timed Nash Equilibria are 
unstable because Equilibria change according to the time. 

 
Figure 8. A geometrical representation of the payoff functions of timed 
Prisoner’s Dilemma. 

Due to space limitation, we do not show what would 
happen to the payoff function and then to timed Nash 
Equilibria for additional values of t such as t = 6, t = 9, t = 12 
etc.  

 
Figure 9. Payoff function of timed prisoner’s Dilemma for t = 3.  

VII. USING TIMED STRATEGIC GAMES IN 4TH GEN WARS. 
As stated in Section “Interpretation of Timed Strategic 

Games”, the Game Theory being proposed was set up to 
interpret a variety of phenomena such as 4th Gen Wars [9] also 
called Asymmetric Wars or Wars Amongst the People” [20], 
value-based management, earned value analysis, and share 
market. Because of space limitations, we will only focus upon 
4th Gen Wars providing a real example of how the proposed 
theory would be usable in practical terms for planning and 
managing purposes. 

Since this work is not a political treaty, our terminology 
would need to be better specified, we prefer explaining what 
we mean by “4th Gen wars” through some examples. We refer 
to all conflicts/confrontations that are similar in nature to 
military campaigns such as the ones in Iraq, Afghanistan (i.e. 
so called war on terror of the USA-UK, NATO since 2001 on, 
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but also the one that Russian forces waged in 1979-89), 
Somalia, Libya, Lebanon, Israel-Palestine, etc. Low intensity, 
asymmetry, guerrilla, insurgency, and non-state actors 
characterize these kinds of wars. 

From a game theory point of view, in this section, we show 
that the proposed model is able to represent all characteristics 
of 4th Gen wars stated in the “Introduction”, i.e., 1) asymmetry, 
2) indefinite duration, 3) partial uselessness of military power, 
and 4) payoff returned from the application of any 
strategy/action of organized actors (e.g., state-actors, GOs, 
NGOs) increases in the beginning and decreases over time, 
while the payoff function of insurgent-like actors is generally 
very low, but is almost constant over time. 

Without loss of generality, we intentionally simplify the 
game by considering two agents that we call player 1 (row) and 
player 2 (column). These two players take part in a timed 
strategic game classified as asymmetric. For the sake of 
clearness we consider neither repeated nor Bayesian games. 
We left them as future work.  Our asymmetric game consists of 
two non-interchangeable types of player that we call identities. 
These two identities are not coalitions, however. They 
represent the unique nature of the players belonging to the 
considered group. 

As a consequence of that, a player can belong to one and 
only one identity. The concept of non-interchangeability is that 
the identity of one of the players cannot be replaced by the 
identity of the other. This asymmetry characterizes the payoff 
function, as well. We refer to the identity “insurgents” as player 
1 (row) and to identity “state actor” or the like as player 2 
(column). 

There are two different actions Ai = (A1, A2) available to 
both players. We consider Ai as strategies in political-military 
terms. In particular, A1 is the action of taking part in the 
asymmetrical confrontation against the opponent (IN) and A2 
represents the action of getting/being out of the game (OUT).  

It is important noting that at a theoretical level when a 
player is out of the game he is no longer a player and so he 
should not be part of it. However, the point that we want to 
remarkably make is that the action of being out of the game is 
part of the game and then we treat such a player as a player 
who is not playing, but he may eventually participate in it again 
(playing again).  

 
Figure 10. Payoff function for “4th Gen War”-strategic game. 

A generalized payoff function for t = t’ is depicted in Figure 
10. That payoff function says that when both players are IN the 

players are confronting each other. We call it WAR. When they 
are both out of the game, no one is gaining anything. We call it 
PEACE. The other two combinations are situations of CRISIS 
(i.e., CRISIS-TURMOIL and CRISIS-OCCUPATION). Note 
that, in reality the combination (OUT-IN, i.e. occupation) is far 
from happening in 4th Gen wars. However, this is what 
happened with the USA troops in Afghanistan and Iraq. More 
likely to happen is the combination IN-OUT (i.e. turmoil), 
when insurgents (player 1) take over the crisis area and the 
state-actor/alliance is still to come. 

In IN-OUT (i.e., turmoil) player 1 does not gain anything 
and player 2 is loosing -β, therefore player 2 is facing a 
situation where he has to make a decision whether it is more 
convenient to stay out of the game to make player 1 gain zero 
but loosing -β or to get in to gain β but making player 1 gain α. 

 
Figure 11. IN-IN payoff functions. 

As far as OUT-IN (occupation) is concerned, player 1 
looses -α while player 2 gains β. OUT-IN is not convenient for 
player 1. This is the formal representation that player 1, when 
the geographical area where he has his interests is occupied, 
tends to get into the game. The proposed game can also model 
that player 1 gains his payoff as long as player 2 is in the game, 
and that player 1 tends to keep player 2 playing. 

Let us now see the setting for values α, β ∈ ℜ. Let us 
consider now, in Figure 11, areas: 

• α = h • t’, region colored with vertical lines, 

• β = k

e
t
θ

t dt
0

t '
∫  

region colored with transversal lines. 

There is a substantial difference between these two timed 
payoff functions (i.e., the two areas) in Figure 11. Player 1’s 
payoff function increases linearly over time. Player 2’s payoff 
function (area) increases in the beginning and then increases 
progressively less to zero, which is the behavior observed for 
4th Gen wars. Based upon the defined Timed Strategic Game, 
we consider the situation at time t = t’ when both α and β are 
constant (i.e., as a snapshot for t = t’). The asymmetry of the 
game is just in this difference. The more t goes on, the more 
player 1’s payoff linearly increases, and the less player 2’s 
payoff increases (at infinity the increment is zero). Then, for a 
sufficient long period of time t’, player 1’s payoff will always 
be greater than player 2’s payoff if h > 0. It is worth noting that 
the proposed model can represent the nature of player 1 such 
that he gains his payoff due to the only fact that player 2 is 
playing (IN) as well as the model can represent the situation 
that if player 2 were OUT, player 1 would not gain anything. 
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Differently from player 1, to gain his payoff, player 2 has to 
take the right actions. In summary, the proposed game (Figure 
10) recreates the situation occurring for 4th Gen wars that the 
only way that player 2 has to decrease (or wipe out) player 1’s 
payoff is to get out of the game. Conversely, in order for player 
2 to increase his payoff the only way is to be part of the game 
(IN-OUT dilemma). Player 1 does not find convenient to stay 
out of the game when player 1 is IN, because of the negative 
score (-α). The combination OUT-IN is modeled to be unlikely 
to happen. The combination IN-OUT explains the situation 
when insurgents have taken over an area, which becomes an 
area of crisis, and a state-actor (i.e., player 2) intervention is 
needed. Until the state-actor intervenes (he is OUT), his payoff 
is negative (-β). 

 
Figure 12. Numerical example on the “4th Gen War” game 

Note that, in Figure 10 there are two Timed Nash 
Equilibria: one for IN-IN (WAR) and one for OUT-OUT 
(PEACE). So, when both players are IN, i.e. at WAR, they tend 
to remain there (i.e., the characteristic of 4th Gen-wars that last 
forever). However, when players are not in the game, they can 
stay in PEACE forever, unless external events (not part of the 
game) take place. 

 
Figure 13. Situation at time t” where player 1 gets a dominant strategy. 

It is now clear enough that this model represents the 
situation that the only strategy to stop WAR is to act 
unilaterally (i.e., irrationally) getting out of the game (OUT) 
and, if in PEACE, do not act unilaterally keeping the state. 

If the proposed model were a suitable model of the reality, 
we can use it to state the right time to get out of the game, i.e., 
as long as player 2 has a dominant strategy. To do so, we 
should know the payoff functions by statistically estimating k, 
θ, and h. Figure 12 and 13 show an example of the game thus 
defined (IN-IN) assuming to know k, θ, and h, that is: 

• t’ = 10, α = 2, h = 0.2  

• β = k

e
t
θ

t dt
0

t '
∫ ≅ 4  

with t’ = 10, k = 4 and θ = 1.  

At t = t’ = 10 the game is in favor of player 2 who is going 
to win the game since he has a higher score. At time t’ = 10, 
neither player 1 nor player 2 did anything because of the nature 
of the confrontation (Nash Equilibrium). Player 1 is not leaving 
the area of the conflict staying IN. Based upon the defined 
game the situation gets worse for player 2 as t goes on (Figure 
13). Let us calculate the payoff at t” = 25: 

• t” = 25, h = 0.2 then α = 25 • 0.2 = 5  

• β = k

e
t
θ

t dt
0

t"
∫ ≅ 4  

with t” = 25, k = 4 and θ = 1.  

The payoff matrix is as follows: 
 

 
Figure 14. Evolution of the matrix in Figure  12 after 25 ys. 

As we see in Figure 14, even if the two Timed Nash Equilibria 
are preserved, the situation is no longer in favor of player 2. 
In summary, the proposed game is a theoretical model, which 
is able to represent the situation as follows: 
• The asymmetric game is, after a sufficient period of time, 

in favor of insurgents (player 1) and against the state-
actor/alliance (player 2) even if the latter has, in the 
beginning, a more “profitable” strategy 

• For player 2, the only way of breaking down the unlucky 
situation is to get out of the game even if the behavior 
classified as irrational and unilateral 

• When planning a military campaign, the state actor (e.g., 
player 2) must identify in advance the correct time of 
getting out of the game (exit strategy) otherwise, as 
analytically explained above, insurgents (player 1) will 
have available the winning (strictly dominant) strategy 

• From the side of the state actor, the only winning (strictly 
dominant) strategy is to avoid that crises may happen; 
otherwise, if crises take place all potential players will be 
at stake. 

Let us now consider the graph in Figure 15. It shows the 
dynamics of the game. The starting point is PEACE where both 
player 1 and player 2 are OUT-OUT of the game. The only two 
suitable cases that we can expect from PEACE are TURMOIL, 
if player 1 comes IN, and OCCUPATION, if player 2 comes 
IN. However, since PEACE is a Timed Nash Equilibrium, we 
assume that both transitions happen because of external causes 
or the behavior of the players is not rational. We identify these 
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“irrational” transitions by dashed arrows in Figure 15. Once 
the game is in the state TURMOIL, if player 2 comes IN (i.e., 
the state actor intervenes) the state of the game turns into WAR 
otherwise, if player 1 comes OUT, the state of the game turns 
into PEACE. 

If, for some reasons, player 1 decides to come out of the 
game, the game can turn into PEACE again, which is a steady 
state and determined by the strategy profile OUT-OUT that is a 
Timed Nash Equilibrium. However, the state of the game can 
turn into WAR, if player 2 intervenes, i.e., he comes IN. Since 
WAR is a steady state determined by the strategy profile IN-IN 
that is a Timed Nash Equilibrium, to avoid WAR, player 2 
should behave irrationally, i.e., he should come OUT of the 
game (i.e., change his action unilaterally). With respect to 
OCCUPATION, it is important noting that the intervention 
(OUT-IN) is the most wrong choice that player 2 can do if the 
aim is to maintain PEACE. 

 
Figure 15. Dynamics of the game IN-OUT 

If the proposed model represents the reality, when dealing 
with real 4th Gen Wars the strategy to maintain peace should be 
to prevent crises by avoiding both occupations and turmoil. 
Whenever a state actor/alliance (player 2) decides to manage a 
crisis (to be IN), the timing of the operation should be clearly 
defined through the suggested model to avoid the loosing 
situation shown in Figure 13, i.e., getting out as far as it is 
convenient. If player 2 is stuck in a war, anyway, the only 
possible action is to get out of the game, wiping out player 1’s 
payoff and investing resources to take player 1 out of the game.  

VIII. CONCLUSION 
In this paper we defined a new theory concerning strategic 

games. The novelty is that we introduced a temporal dimension 
in the setting of strategic games. First, we defined a Timed 
Strategic Game and then we have stated and proved a theorem 
that shows that, under certain circumstances, a Timed Nash 
Equilibrium is an “instantaneous” Nash Equilibrium. We also 
defined the concept of stable, unstable, partially left/right-
handed stable Nash Equilibrium, which make easier the 
comprehension of the theory. 

We explained the new timed game through some examples 
and adapted it to 4th Gen wars. The game can be applied to 
different fields such as value-based management, (e.g., value-

based software engineering), earned value analysis, and share-
market dynamics. Additionally, we think that simulation can be 
successfully applied to this field. The aim would be to try out 
the suitability of the application of the theory in a number of 
different situations and contexts, before applying it in the field. 
We leave all these points as future work. 
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